Slow Light Photon Physics Anke Kuijk Joe T. Mok and Benjamin J. Eggleton, Nature 433, 811-812 (2005) Matthew S. Bigelow, Nick N. Lepeshkin and Robert W. Boyd, Phys. Rev. Lett. 90, 113903 (2003) Matthew S. Bigelow, Nick N. Lepeshkin and Robert W. Boyd, Science 301, 200-202 (2005) Anke Kuijk
Overview Introduction Stimulated Brillouin Scattering Fibers Coherent Population Oscillations Ruby Alexandrite
Slowing light down Refractive index and absorption Spectral resonances Electromagnetically induced transparancy
Stimulated Brillouin Scattering Fibers http://metwww.epfl.ch/Brillouin/montage_brillouinE.htm
Stimulated Brillouin Scattering 100 ns pulse can be slowed down by 30 ns while experiencing 1000-fold amplification Better results with EIT Combine amplification with delay Amplification not constant with delay Directly compatible with fiber-optics based communication network First optically controlled pulse delay
Coherent Population Oscillations Ruby Pump ω1 Probe ω3 = ω1 + δ Spectral hole δ*T1 1
Coherent Population oscillations Ruby Light slowed down to 58 m/s No frequency or mode locking Room temperature Higher absorption than EIT
Coherent Population Oscillations Alexandrite Excited state absorption Coherent population oscillations 78% mirror symmetry 22% inversion symmetry
Coherent Population Oscillations Alexandrite Roomtemperature and solid state Speed of light in Alexandrite: 91 m/s -800 m/s
Conclusion SBS and CPO are techniques that can be used to slow down light at roomtemperature in solid state materials Applications lie in photonics and fiber-optics based telecommunication