Linear scaling solvers based on Wannier-like functions

Slides:



Advertisements
Similar presentations
Wave function approaches to non-adiabatic systems
Advertisements

Modelling of Defects DFT and complementary methods
Daniel Sánchez-Portal
Quantum Theory of Solids
Introduction to PAW method
PARATEC and the Generation of the Empty States (Starting point for GW/BSE) Andrew Canning Computational Research Division, LBNL and Chemical Engineering.
Pseudopotentials and Basis Sets
Recap on Basis Sets Pablo Ordejon ICMAB-CSIC. Basis Sets in SIESTA Generated from the solution of the FREE ATOM (with the pseudopotential) Finite range:
Transport Calculations with TranSIESTA
Javier Junquera Atomic orbitals of finite range as basis sets.
Stability of RVB state with respect to charge modulations Rastko Sknepnek Iowa State University and DOE Ames Lab In collaboration with: Jun Liu and Joerg.
Temperature Simulations of Magnetism in Iron R.E. Cohen and S. Pella Carnegie Institution of Washington Methods LAPW:  Spin polarized DFT (collinear)
Large-Scale Density Functional Calculations James E. Raynolds, College of Nanoscale Science and Engineering Lenore R. Mullin, College of Computing and.
Introduction to run Siesta
Lectures Introduction to computational modelling and statistics1 Potential models2 Density Functional.
Deformation of Nanotubes Yang Xu and Kenny Higa MatSE 385
Algorithms for Total Energy and Forces in Condensed-Matter DFT codes
Computational Solid State Physics 計算物性学特論 第4回 4. Electronic structure of crystals.
Norm-conserving pseudopotentials and basis sets in electronic structure calculations Javier Junquera Universidad de Cantabria.
The Nuts and Bolts of First-Principles Simulation Durham, 6th-13th December : DFT Plane Wave Pseudopotential versus Other Approaches CASTEP Developers’
Introduction to input & output files
Order(N) methods in QMC Dario Alfè 2007 Summer School on Computational Materials Science Quantum Monte Carlo: From Minerals and Materials.
Javier Junquera Code structure: calculation of matrix elements of H and S. Direct diagonalization José M. Soler = N  N N  1.
Introduction to run Siesta Javier Junquera Université de Liège.
Basic introduction to running Siesta Eduardo Anglada Siesta foundation-UAM-Nanotec
Université de Liège Numerical Atomic Orbitals: An efficient basis for Order-N ab-initio simulations Javier Junquera.
How to run SIESTA Víctor García Suárez (thanks to J. Junquera and J. Ferrer)
Development of a full-potential self- consistent NMTO method and code Yoshiro Nohara and Ole Krogh Andersen.
Sicily, May (2008) Conduction properties of DNA molecular wires.
Comp. Mat. Science School 2001 Lecture 21 Density Functional Theory for Electrons in Materials Richard M. Martin Bands in GaAs Prediction of Phase Diagram.
Linear scaling fundamentals and algorithms José M. Soler Universidad Autónoma de Madrid.
TBPW: A Modular Framework for Pedagogical Electronic Structure Codes Todd D. Beaudet, Dyutiman Das, Nichols A. Romero, William D. Mattson, Jeongnim Kim.
Density Functional Theory Richard M. Martin University of Illinois
Comp. Mat. Science School Linear Scaling ‘Order-N’ Methods in Electronic Structure Theory Richard M. Martin University of Illinois Acknowledgements:
Density Functional Theory A long way in 80 years L. de Broglie – Nature 112, 540 (1923). E. Schrodinger – 1925, …. Pauli exclusion Principle.
Optimization of Numerical Atomic Orbitals
Linear scaling solvers based on Wannier-like functions P. Ordejón Institut de Ciència de Materials de Barcelona (CSIC)
Linear scaling electronic structure methods in chemistry and physics Computing in Science & Engineering, vol. 5, issue 4, 2003 (1) Stefan Goedecker, Gustavo.
Introduction to the SIESTA method SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE University of Illinois at Urbana-Champaign, June 13-23, 2005 Some technicalities.
Discretization, z-averaging, thermodynamics, flow diagrams Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Start. Technische Universität Dresden Physikalische Chemie Gotthard Seifert Tight-binding Density Functional Theory DFTB an approximate Kohn-Sham DFT.
MODELING MATTER AT NANOSCALES 4. Introduction to quantum treatments Eigenvectors and eigenvalues of a matrix.
Tutorial: Quantum Dynamics of Four- Atom Reactions within the Real Wave Packet Framework Stephen Gray Chemistry Division Argonne National Laboratory Argonne,
Determination of surface structure of Si-rich SiC(001)(3x2) Results for the two-adlayer asymmetric dimer model (TAADM) are the only ones that agree with.
© copyright 2011 William A. Goddard III, all rights reservedCh121a-Goddard-L14 Periodic Boundary Methods and Applications: Ab-initio Quantum Mechanics.
4/8/2015PHY 752 Spring Lecture 291 PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107 Plan for Lecture 29:  Chap. 22 in Marder & pdf file on.
How to prepare the interface between siesta and wannier90
Comp. Mat. Science School Electrons in Materials Density Functional Theory Richard M. Martin Electron density in La 2 CuO 4 - difference from sum.
The Siesta program for electronic structure simulations
Electrical Engineering Materials
Integrated Computational Materials Engineering Education Calculation of Equation of State Using Density Functional Theory Mark Asta1, Katsuyo Thornton2,
Atomic orbitals of finite range
Introduction to Tight-Binding
Macroscopic averages in Abinit
Integrated Computational Materials Engineering Education Calculation of Equation of State Using Density Functional Theory Mark Asta1, Katsuyo Thornton2,
Solid state physics Lecture 3: chemical bonding Prof. Dr. U. Pietsch.
Convergence in Computational Science
Polytetrafluoroethylene
The k∙p Method Brad Malone Group Meeting 4/24/07.
The Nuts and Bolts of First-Principles Simulation
Integrated Computational Materials Engineering Education Calculation of Equation of State Using Density Functional Theory Mark Asta1, Katsuyo Thornton2,
龙讯教程 How to simulate ultrafast dynamics using rt-TDDFT in Pwmat?
Molecular Orbital Theory
Time-Dependent Density Functional Theory (TDDFT)
Metastability of the boron-vacancy complex (C center) in silicon: A hybrid functional study Cecil Ouma and Walter Meyer Department of Physics, University.
物質科学のための計算数理 II Numerical Analysis for Material Science II
The position operator in extended systems:
Spin-triplet molecule inside carbon nanotube
Tightbinding Method Molecular Physics Review!
Second quantization and Green’s functions
Presentation transcript:

Linear scaling solvers based on Wannier-like functions P. Ordejón Institut de Ciència de Materials de Barcelona (CSIC)

Linear scaling = Order(N) CPU load 3 ~ N ~ N Early 90’s ~ 100 N (# atoms)

Order-N DFT Find density and hamiltonian (80% of code) Find “eigenvectors” and energy (20% of code) Iterate SCF loop Steps 1 and 3 spared in tight-binding schemes

Key to O(N): locality Large system ``Divide and conquer’’ W. Yang, Phys. Rev. Lett. 66, 1438 (1992) ``Nearsightedness’’ W. Kohn, Phys. Rev. Lett. 76, 3168 (1996)

Locality of Wave Functions Ψ1 Ψ2 1 = 1/2 (Ψ1+Ψ2)  2 = 1/2 (Ψ1-Ψ2) Wannier functions (crystals) Localized Molecular Orbitals (molecules)

Locality of Wave Functions Energy: Unitary Transformation: We do NOT need eigenstates! We can compute energy with Loc. Wavefuncs.

Locality of Wave Functions Exponential localization (insulators): 610-21 7.6 Wannier function in Carbon (diamond) Drabold et al.

Locality of Wave Functions Insulators vs Metals:  Carbon (diamond)  Aluminium Goedecker & Teter, PRB 51, 9455 (1995)

Linear Scaling Localization + Truncation Sparse Matrices 5 4 Truncation errors 2 1 3 In systems with a gap. Decay rate a depends on gap Eg

Linear Scaling Approaches (Localized) object which is computed: - wave functions - density matrix Approach to obtain the solution: - minimization - projection spectral Reviews on O(N) Methods: Goedecker, RMP ’98 Ordejón, Comp. Mat. Sci.’98

Basis sets for linear-scaling DFT LCAO: - Gaussian based + QC machinery M. Challacombe, G. Scuseria, M. Head-Gordon ... - Numerical atomic orbitals (NAO) SIESTA S. Kenny &. A Horsfield (PLATO) OpenMX Hybrid PW – Localized orbitals - Gaussians J. Hutter, M. Parrinello - “Localized PWs” C. Skylaris, P, Haynes & M. Payne B-splines in 3D grid D. Bowler & M. Gillan Finite-differences (nearly O(N)) J. Bernholc

Divide and conquer x x’ Weitao Yang (1992) central buffer b c b buffer

Fermi operator/projector Goedecker & Colombo (1994) f(E) = 1/(1+eE/kT)  n cn En F   cn Hn Etot = Tr[ F H ] Ntot = Tr[ F ] ^ ^ Emin EF Emax 1 ^ ^ ^

Density matrix functional Li, Nunes & Vanderbilt (1993) -0.5 0 1 1.5 1    = 3 2 - 2 3 Etot() =  H = min 

Wannier O(N) functional Mauri, Galli & Car, PRB 47, 9973 (1993) Ordejón et al, PRB 48, 14646 (1993) Sij = < i | j > | ’k > = j | j > Sjk-1/2 EKS = k < ’k | H | ’k > = ijk Ski-1/2 < i | H | j > Sjk-1/2 = Trocc[ S-1 H ] Kohn-Sham EOM = Trocc[ (2I-S) H ] Order-N = Trocc[ H] + Trocc[(I-S) H ] ^

Order-N vs KS functionals Non-orthogonality penalty Sij = ij  EOM = EKS

Chemical potential (r) = 2ij i(r) (2ij-Sij) j(r) Kim, Mauri & Galli, PRB 52, 1640 (1995) (r) = 2ij i(r) (2ij-Sij) j(r) EOM = Trocc[ (2I-S) H ] # states = # electron pairs  Local minima EKMG = Trocc+[ (2I-S) (H-S) ] # states > # electron pairs  = chemical potential (Fermi energy) Ei >   |i|  0 Ei <   |i|  1 Difficulties Solutions Stability of N() Initial diagonalization / Estimate of  First minimization of EKMG Reuse previous solutions

Orbital localization  i Rc rc i(r) =  ci (r)

Convergence with localisation radius Si supercell, 512 atoms Relative Error (%) Rc (Ang)

Sparse vectors and matrices 2.12 7 1.85 3 5.37 2 x i 1.15 8 3.14 4 8.29 y 8.29  1.85 = 15.34 3.14  0 = 0 1.15  0 = 0 ------- Sum 15.34 Restore to zero xi  0 only

c-Si supercells, single- Actual linear scaling c-Si supercells, single- Single Pentium III 800 MHz. 1 Gb RAM 132.000 atoms in 64 nodes

Linear scaling solver: practicalities in SIESTA P. Ordejón Institut de Ciència de Materials de Barcelona (CSIC)

Order-N in SIESTA (1) SCF Calculate Hamiltonian Minimize EKS with respect to WFs (GC minimization) Build new charge density from WFs SCF

Energy Functional Minimization Start from initial LWFs (from scratch or from previous step) Minimize Energy Functional w.r.t. ci EOM = Trocc[ (2I-S) H ] or EKMG = Trocc+[ (2I-S) (H-S) ] Obtain new density (r) = 2ij i(r) (2ij-Sij) j(r) ci(r) =  ci (r)

Orbital localization  i Rc rc i(r) =  ci (r)

Order-N in SIESTA (2) Practical problems: Minimization of E versus WFs: First minimization is hard!!! (~1000 CG iterations) Next minimizations are much faster (next SCF and MD steps) ALWAYS save SystemName.LWF and SystemName.DM files!!!! The Chemical Potential (in Kim’s functional): Data on input (ON.Eta). Problem: can change during SCF and dynamics. Possibility to estimate the chemical potential in O(N) operations If chosen ON.Eta is inside a band (conduction or valence), the minimization often becomes unstable and diverges Solution I: use chemical potential estimated on the run Solution II: do a previous diagonalization

Example of instability related to a wrong chemical potential

Order-N in SIESTA (3) SolutionMethod OrderN ON.Functional Ordejon-Mauri or Kim (def) ON.MaxNumIter Max. iterations in CG minim. (WFs) ON.Etol Tolerance in the energy minimization 2(En-En-1)/(En+En-1) < ON.Etol ON.RcLWF Localisation radius of WFs

Order-N in SIESTA (4) ON.Eta (energy units) Chemical Potential (Kim) Shift of Hamiltonian (Ordejon-Mauri) ON.ChemicalPotential ON.ChemicalPotentialUse ON.ChemicalPotentialRc ON.ChemicalPotentialTemperature ON.ChemicalPotentialOrder

Fermi operator/projector Goedecker & Colombo (1994) f(E) = 1/(1+eE/kT)  n cn En F   cn Hn Etot = Tr[ F H ] Ntot = Tr[ F ] ^ ^ Emin EF Emax 1 ^ ^ ^