The Derivative and the Tangent Line Problem 12.3
Tangent Definition From geometry a line in the plane of a circle intersects in exactly one point We wish to enlarge on the idea to include tangency to any function, f(x)
Animated Tangent
Slope of Line Tangent to a Curve Approximated by secants two points of intersection Let second point get closer and closer to desired point of tangency • • •
Animated Secant Line
Slope of Line Tangent to a Curve How do you find the slope of a line? What does this have to do with the difference quotient? • •
The Slope Is a Limit Consider f(x) = x3 Find the tangent at x= 2 Now finish …
Calculator Capabilities Able to draw tangent line Steps Specify function on Y= screen F5-math, A-tangent Specify an x (where to place tangent line) Note results
Difference Function Creating a difference function on your calculator store the desired function in f(x) x^3 -> f(x) Then specify the difference function (f(x + dx) – f(x))/dx -> difq(x,dx) Call the function difq(2, .001) Use some small value for dx Result is close to actual slope
Definition of Derivative The derivative is the formula which gives the slope of the tangent line at any point x for f(x) Note: the limit must exist no hole no jump no pole no sharp corner A derivative is a limit !
Finding the Derivative We will (for now) manipulate the difference quotient algebraically View end result of the limit Note possible use of calculator limit ((f(x + dx) – f(x)) /dx, dx, 0)
Related Line – the Normal The line perpendicular to the function at a point called the “normal” Find the slope of the function Normal will have slope of negative reciprocal to tangent Use y = m(x – h) + k
To actually find f(x), we need a specific point it contains Using the Derivative Consider that you are given the graph of the derivative … What might the slope of the original function look like? Consider … what do x-intercepts show? what do max and mins show? f `(x) <0 or f `(x) > 0 means what? f '(x) To actually find f(x), we need a specific point it contains
Derivative Notation For the function y = f(x) Derivative may be expressed as …
Assignment Lesson 3.1 Page 123 Exercises: 1 – 41 EOO, 63, 65
Slope of Line Tangent to a Curve Approximated by secants two points of intersection Let second point get closer and closer to desired point of tangency • • • View spreadsheet simulation Geogebra Demo
Definition of a Tangent Let Δx shrink from the left
Definition of a Tangent Let Δx shrink from the right