Neutrino Magnetic Moments:

Slides:



Advertisements
Similar presentations
1 3+2 Neutrino Phenomenology and Studies at MiniBooNE PHENO 2007 Symposium May 7-9, 2007 U. Wisconsin, Madison Georgia Karagiorgi, Columbia University.
Advertisements

Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Сессия ЯФ ОФН РАН, г., ИТЭФ Статус экспериментальных работ по измерению магнитного момента нейтрино Старостин А.С. ИТЕФ.
Neutrino Physics - Lecture 6 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
30 Ge & Si Crystals Arranged in verticals stacks of 6 called “towers” Shielding composed of lead, poly, and a muon veto not described. 7.6 cm diameter.
Low Energy Neutrino Physics at the Kuo-Sheng Nuclear Power Plant  Overview of TEXONO Collaboration  Kuo-Sheng Reactor Neutrino Laboratory  Results on.
 Starting Points (Collaboration ; Laboratory )  1-kg HPGe : Magnetic Moment Results  Physics & Requirements of ULEGe Detectors  R&D on ULEGe Prototypes.
Neutrino Physics and Dark Matter Physics with Ultra-Low-Energy Germanium Detector  Overview of TEXONO Collaboration  Kuo-Sheng Reactor Neutrino Laboratory.
 Starting Points (Collaboration ; Laboratories ; Research Program)  Physics & Requirements for ULE-HPGe - focus on WIMP Searches  R&D on ULE-HPGe Prototypes.
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
Caren Hagner CSTS Saclay Present And Near Future of θ 13 & CPV in Neutrino Experiments Caren Hagner Universität Hamburg Neutrino Mixing and.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
 Kuo-Sheng Neutrino Laboratory & Program  Update of Neutrino Magnetic Moment results  Sensitivities of Magnetic Moment Searches  Neutrino-Nucleus Coherent.
Low Energy Neutrino Physics at the Kuo-Sheng Reactor Laboratory in Taiwan  Overview of TEXONO Collaboration  Kuo-Sheng Reactor Neutrino Laboratory 
Highlights of the TEXONO Research Program : Status and Plans  Overview of TEXONO Collaboration  Research Program  Kuo-Sheng Reactor Neutrino Laboratory.
Neutrino Oscillations in vacuum Student Seminar on Subatomic Physics Fundamentals of Neutrino Physics Dennis Visser
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
Large TPC Workshop, Paris, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay.
New Results from the Salt Phase of SNO Kathryn Miknaitis Center for Experimental Nuclear Physics and Astrophysics, Univ. of Washington For the Sudbury.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
Determination of activity of 51 Cr source on gamma radiation measurements V.V.Gorbachev, V.N.Gavrin, T.V.Ibragimova, A.V.Kalikhov, Yu.M.Malyshkin,A.A.Shikhin.
1 GEMMA: experimental searches for neutrino magnetic moment JINR: V. Brudanin, V. Egorov, D. Medvedev, M. Shirchenko, E. Shevchik, I. Zhitnikov, V. Belov.
 TEXONO Collaboration & Kuo-Sheng Laboratory & Program Overview  Results on Neutrino Magnetic Moments, Reactor Electron Neutrinos and Reactor Axion Search.
1 Performance and Physics with the CsI(Tl) Array at the Kuo-Sheng Reactor Neutrino Laboratory  Physics with CsI(Tl) detector  Period -2 configuration.
Robert Cooper. What is CENNS? Coherent Elastic Neutrino-Nucleus Scattering To probe a “large” nucleus Recoil energy small Differential energy spectrum.
(Germanium Experiment for measurement of Magnetic Moment Antineutrino)
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
Limits on Low-Mass WIMP Dark Matter with an Ultra-Low-Energy Germanium Detector at 220 eV Threshold Overview (Collaboration; Program; Laboratory) Physics.
Review of Neutrino Coherent Scattering
Status of ULE-HPGe Experiment for WIMP Search in YangYang
Solar Neutrinos on the beginning of 2017
Towards kg-scale Ultra-Low-Energy Ultra-Low-Background Ge Detector
Reactor anti-neutrinos and neutrinos
On behalf of TEXONO collaboration
On behalf of TEXONO collaboration
Dark Matter Search With an Ultra-low Threshold Germanium Detector proposed by Tsinghua University Seoul National University Academia Sinica Qian Yue.
5th Rencontres du Vietnam
Results in Neutrino Physics & Astrophysics : Highlights
The TEXONO Research Program on
Sterile Neutrinos and WDM
The Heidelberg Dark Matter Search Experiment
Donato Nicolo` Pisa University & INFN,Pisa
SOLAR ATMOSPHERE NEUTRINOS
Outline 1. Introduction & Overview 2. The experiment result 3. Future
Recent Result and Status of TEXONO Experiments
Physics with the ICARUS T1800 detector
Low-Energy Neutrino and Dark Matter Physics with TEXONO Program
How precisely do we know the antineutrino source spectrum from a nuclear reactor? Klaus Schreckenbach (TU München) Klaus Schreckenbach.
Building ICECUBE A Neutrino Telescope at the South Pole
Building ICECUBE A Neutrino Telescope at the South Pole
SOLAR ATMOSPHERE NEUTRINOS
Low Energy Neutrino Physics at Reactors
Low Energy Neutrino Physics at the Kuo-Sheng Reactor Laboratory
Highlights of the TEXONO Research Program :
Venktesh Singh Academia Sinica, Taiwan
Starting Points (Collaboration ; Laboratory ; Magnetic Moment Results)
Impact of neutrino interaction uncertainties in T2K
Overview of TEXONO Collaboration Kuo-Sheng Reactor Neutrino Laboratory
Low Energy Neutrino Physics AT Nuclear Power Reactors
Yue, Yongpyung, Korea Prospects of Dark Matter Search with an Ultra-Low Threshold Germanium Detector Yue, Yongpyung, Korea
Kuo-Sheng(國聖) Reactor Neutrino Lab.
Neutrino Physics & Astrophysics : Overview
Davide Franco for the Borexino Collaboration Milano University & INFN
Search for Invisible Decay of Y(1S)
(On behalf of the TEXONO Collaboration) Academia Sinica, Taiwan
Neutrino Magnetic Moment : Overview
Kuo-Sheng(國聖) Reactor Neutrino Lab.
Presentation transcript:

Neutrino Magnetic Moments: Status and Prospects Physics Overview Astrophysics Bounds Recent Results on Direct Experiments Future Projects Summary Henry T. Wong Academia Sinica, Taiwan @ Neutrino 2004, Paris

Motivations e.g. fundamental neutrino properties & interactions ; a channel to differentiate Dirac/Majorana neutrinos (nD/nM) look for surprises and/or constrain parameter space with future precision oscillation data explore new neutrino sources ; understand known ones explore new detection channels & techniques, esp. @ low energy explore roles of neutrinos in astrophysics

Particle Physics ※ (ni)L – (nj )R – g vertices described in general by: eij and bij are the electric & magnetic dipole moments coupling ni & nj constrained by symmetry principles, nD/nM, diagonal/transition moments (ni =/ nj ?) [ e.g. nM & i=j  b=e=0 ] ※ Experimental measureable “neutrino magnetic moment” depends on |nl > after oscillation distance L Subtleties/Complications: measureable is an effective/convoluted parameter (c.f. 0nbb) physics information depends on exact |n> compositions at the detector

Experimental Manifestations Minimally-Extended Standard Model with nD : mn VERY small  many ways to significantly enhance it (nM, WR …..) study consequences from the change of neutrino spin states in a (astrophysical) medium 1/T spectral shape in n-e scattering, T is electron recoil energy Neutrino radiative decays …………

Astrophysics Bounds/Indications From: Big Bang Nucleosynthesis degree of freedom Stellar Cooling via Cooling of SN1987a via nactive  nsterile Absence of solar (KamLAND-03 < 2.8x10-4) ranges of mn(astro) < 10-10 – 10-12 mB Complications/Assumptions : astrophysics modeling (e.g. Solar B-field) Neutrino properties (e.g nD / nM ; no other anomalous interactions) Global treatment (e.g. effects from matter, oscillations ; interference/competitions among channels ……)

Magnetic Moments & Solar Neutrinos For completeness/historical footnote …… Magnetic Moments & Solar Neutrinos ne produced in the Sun interact with B to become nx(xe), via spin-flavor precession(SFP), with or without resonance effects in solar medium. used to explain anti-correlation of Cl-n data with Sun-spot cycles in late 80’s scenario compatible with all solar neutrino data KamLAND data fixes LMA as the solution for solar neutrino problem  SFP cannot be the dominant contribution [n data + LMA allowed region + no ]  constrain  mn B dr : [Akhmedov et al., Miranda et al. …] ranges of mn(solar) < 10-10 – 10-12 mB

Direct Experiments using sources understood by independent means : reactor n , accelerator n , n at detector , n-sources (future) look for 1/T excess due to n-e scattering via mn channel over background and Standard Model processes reactor n : reactor ON/OFF comparison to filter out background uncertainties n : account for background spectra by assumptions/other constraints limits independent of |n>final : valid for nD/nM & diag./tran. moments -- no modeling involved interpretation of results : need to take into account difference in |n>initial

Solar n : SK & Borexino ※ SK spectral distortion over oscillation “bkg” [hep-ex/0402015] 8B n SK alone : mn(n ) < 3.6 X 10-10 mB (90% CL) + all n data : mn(n-LMA ) < 1.3 X 10-10 mB (90% CL) + KamLAND : mn(n-LMA ) < 1.1 X 10-10 mB (90% CL) ※ Borexino/CTF spectral analysis [PLB 563,2003] mainly 7Be n bkg=0 : mn(n ) < 1.2 X 10-9 mB (90% CL) Assume linear bkg + best fit : mn(n) < 5.5 X 10-10 mB (90% CL)

Accelerator n : LSND & DONUT ※ LSND [PRD 63, 2001]: select “single electron” events taking SM s(nm-e), measured s(ne-e)  agrees with SM  set limit ※ DONUT [PLB 513, 2001]: observed nt from Ds decays at expected level look for “single electron” events at level >> SM s(n-e) observed 1 event with 2.3 expected background @ e=9% limit: mn(nt) < 3.9 X 10-7 mB (90% CL)

Reactor n @ Bugey : MUNU CF4 TPC (total mass 11.4 kg; containment e~0.5 at 1 MeV) excellent “single electron” event selection via 4p liquid scintillator & tracking distinguish start/end of track & measure scattering angle w.r.t. reactor direction  measure neutrino energy Reactor ON/OFF comparison  forward/background events comparison

MUNU data (66.6 d ON/16.7 d OFF) [PLB 564, 2003] excess of counts < 900 keV ; NO explanations yet [fn(reactor) below 2 MeV not well-known] limits depends on energy range taken : Visual scan T > 700 keV mn(ne) < 1.4 X 10-10 mB (90% CL) Visual scan T > 900 keV mn(ne) < 1.0 X 10-10 mB (90% CL) Auto scan T > 300 keV mn(ne) < 1.7 X 10-10 mB (90% CL) studies of hidden n-sources and/or low energy background necessary

Reactor n @ Kuo-Sheng : TEXONO simple compact all-solid design : HPGe (mass 1 kg) enclosed by active NaI/CsI anti-Compton, further by passive shieldings & cosmic veto focus on 10-100 keV range for high signal rate & robustness: mn >> SM [decouple irreducible bkg  unknown sources make searches more conservative ] T<<En  ds/dT depends on total fn flux but NOT spectral shape [well known : ~6 fission-n  ~1.2 238U capture-n per fission ] selection: single-event after veto, anti-Comp., PSD Inner Target Volume

TEXONO data (4712/1250 hours ON/OFF) [PRL 90, 2003] comparable bkg level to underground CDM experiment at 10-20 keV : ~ 1 day-1keV-1kg-1 (cpd) analysis threshold 12 keV No excess of counts ON/OFF comparison Limit: mn(ne) < 1.3 X 10-10 mB (90% CL) more data/improvement to get to sensitivity range mn(ne) 1.0 X 10-10 mB

Combined Analysis [Grimus et al., …. ] use all available information, incl. LMA global fit & error contour take nM  only transition moments ni  nj & m†=m adopt mn direct limits from SK spectral shape & reactor expts “Total” Magnetic Moment : Reactor n: n at SK:

Sensitivity Improvement Scales as: Nn : signal events B : background level m : target mass t : measurement time Nn  fn (neutrino flux) & related to T-threshold T-threshold : e.g. Nn increase X~3 from 10 keV to 10 eV in Ge (1/T  atomic energy level threshold) BIG statistical boost in mn comes from enhancement in fn by, e.g. artificial n-sources, b-beams etc. BUT: for systematics control, coupled with low threshold to keep mn >> SM rates maintain low background level

GEMMA Project : Reactor n (Russia) at Kalininskaya Power Plant Improvement over TEXONO-HPGe parameters : f~2X1013 cm-2s-1 at 15 m 2 kg HPGe target size 2 keV threshold Sensitivity : mn(ne)  3 X 10-11 mB

MAMONT Project : 3H-source (Russia, USA, Germany) TRITIUM SOURCE of 40 MCi activity (4 kg 3H) with flux of 61014 cm-2s-1 (!) ULTRA-LOW-THRESHOLD DETECTORS Eth~10 eV (!): SILICON CRYODETECTOR 15100cc M=3kg, ionization-into-heat conversion effect (CWRU-Stanford-JINR) HIGH-PURITY-GERMANIUM DETECTOR 6150cc, M=4.8kg, internal amplification by avalanche multiplication (ITEP) SENSITIVITY (95% C.L.):  2.5 10-12B 50 cm Conceptual layout of the -e scattering experiment with 40 MCi tritium source

Reactor Neutrino Interaction Cross-Sections TEXONO - ULEGe Reactor Neutrino Interaction Cross-Sections On-Going Data Taking (200 kg CsI) : SM s(ne) T > 2 MeV R&D (ULEGe Prototype): Coh. (nN) T < 1 keV Results & More Data (HPGe) : mn(ne) T ~ 10-100 keV

“Ultra-Low-Energy” HPGe Prototype modular mass 5 g  can be constructed in multi-array form threshold <100 eV after modest PSD R&D on sub-keV background/calibration/threshold applications in nN coherent scattering & Dark Matter searches T>500 eV can be used for mn(ne)  3 X 10-11 mB for a 1 kg detector at ~1 cpd background level Threshold ~ 100 eV

Summary & Outlook Surprises Need Not be Surprising in Neutrino Physics …. a conceptually rich subject ; much neutrino physics & astrophysics can be explored n-osc. : Dmn , Uij 0nbb : mn , Uij , nD/nM mn : mn , Uij , nD/nM , n  g practical consequences remain to be seen ; NO indications yet experimental studies push on new neutrino sources & detection techniques/ranges/channels potential importance in other areas