Cooling Update (25 February 2014)

Slides:



Advertisements
Similar presentations
Recap of heat loads and peak doses from HL-LHC Q1 to Q7 L.S. Esposito, F. Cerutti HL-LHC WP3 meeting, 22 May 2014.
Advertisements

D1 and MCBXC pressurized superfluid helium channels sizing for heat extraction Rob van Weelderen
24/01/08Energy deposition, LIUWG, Elena Wildner1 Upgrade phase 1: Energy deposition in the triplet Elena Wildner Francesco Cerutti Marco Mauri.
R. Ostojic, WAMSDO, 19 May 2008 LHC Insertion Region Upgrade Phase I 1.Upgrade goals and milestones 2.Review of IR systems: main findings 3.The emerging.
TOTEM Collaboration Meeting, Feb. 2005, F. Haug, CERN Cooling System for TOTEM Friedrich Haug and Jihao Wu Cryogenics for Experiments CERN TOTEM Collaboration.
The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme,
The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme,
LARP LQX and MQX Magnets Cryogenic Testing at Fermilab’s Industrial Building 1 Roger Rabehl Technical Division/Test & Instrumentation Department.
E. Todesco PROPOSAL OF APERTURE FOR THE INNER TRIPLET E. Todesco CERN, Geneva Switzerland With relevant inputs from colleagues F. Cerutti, S. Fartoukh,
MQXF Cold-mass Assembly and Cryostating H. Prin, D. Duarte Ramos, P. Ferracin, P. Fessia 4 th Joint HiLumi LHC-LARP Annual Meeting November 17-21, 2014.
The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme,
September 19/20, 2007 SIS 100 Magnet cooling and cryogenic distribution.
1 Hi-Lumi WP3 meeting Update on the Q1 to D1 cryostat Jan 28, 2014  Outline  Cryostat cross section options  Elliptical interconnect.
20to2T5m100cm Images Van Graves February 13, 2014.
Cryogenic update before Fermilab meeting (and after the helium tank review) Coordination meeting 6 th May 2015 K. Brodzinski HiLumi-LHC-CC-Cryo-PPT-18_v1.
Beam screens in IT phase 1
Technical agreement n 3 New SC Magnets activities P. Fessia (G. De Rijk), D. Reynet, J.M Rifflet.
S. Claudet - 31st May 2007Power refrigeration for LHC Power refrigeration at 4.5K & 1.8K for the LHC S. Claudet, CERN AT-ACR.
The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme,
Cooling and thermal analysis HL-LHC/LARP International Review of the Inner Triples Quadrupoles (MQXF) Design: dec 2014 / CERN R. van Weelderen, G.
9/17/07IRENG071 Cryogenic System for the ILC IR Magnets QD0 and QF1 K. C. Wu - BNL.
R. van Weelderen, LIUWG, IT upgrade phase I: Status of cryogenic scheme evolution (in work) Outline - Old & new layout - Design constraints.
4/27/06 1 US LHC ACCELERATOR RESEARCH PROGRAM brookhaven - fermilab – berkeley - slac US LARP Inner Triplet Cryogenics and Heat Transfer LARP Collaboration.
Heat loads and cryogenics L.Tavian, D. Delikaris CERN, Cryogenics Group, Technology Department Accelerators & Technology Sector Friday, October 15, 20101HE-LHC'10.
10/3/05 1 US LHC ACCELERATOR RESEARCH PROGRAM brookhaven - fermilab – berkeley - slac US LARP Inner Triplet Cryogenics and Heat Transfer Roger Rabehl Fermilab.
AT-VAC SPC Nicolaas KOS Beam Screens for Inner Triplet Magnets LHC Upgrade Phase 1 Nicolaas KOS  LHC Upgrade phase 1  Inner triplet BS Requirements.
Cryogenic scheme, pipes and valves dimensions U.Wagner CERN TE-CRG.
Date 2007/Sept./12-14 EDR kick-off-meeting Global Design Effort 1 Cryomodule Interface definition N. Ohuchi.
SPL cryomodule specification meeting, CERN 19th October 2010 SPL cryomodule specification: Goals of the meeting SPL cryomodule specification: Goals of.
E. Todesco LAYOUT FOR INTERACTION REGIONS IN HI LUMI LHC E. Todesco CERN, Geneva Switzerland Acknowledgements: B. Dalena, M. Giovannozzi, R. De Maria,
E. Todesco HL LHC LAYOUT FROM Interaction POINT TO SEPARATION DIPOLE E. Todesco CERN, Geneva Switzerland Acknowledgements: B. Dalena, M. Giovannozzi, R.
5 K Shield Study of STF Cryomodule (up-dated) Norihito Ohuchi KEK 2008/4/21-251FNAL-SCRF-Meeting.
Specific QXF cold- mass requirements to ensure a robust cooling by superfluid helium 4th Joint HiLumi LHC-LARP Annual Meeting: R. van Weelderen,
8/29/07K. C. Wu - Brookhaven National Lab1 Major Components in ILC IR Hall Interchangeable Detectors.
LHC Machine Advisory Committee Meeting no.19 QRL status 16 June 2006 G. Riddone, AT-ACR On behalf of the QRL team.
Cryogenics for SuperB IR Magnets J. G. Weisend II SLAC National Accelerator Lab.
Bruno Vullierme Sept LHC-CC09 - 3rd LHC Crab Cavity Workshop Slide 1 CRAB CAVITY INTEGRATION CRYOGENICS INSTALLATION.
31/07/08Review new IRs: Energy Deposition1 Energy Deposition in the New IRs Francesco Cerutti, Marco Mauri, Alessio Mereghetti, Ezio Todesco, Elena Wildner.
SIS 100 Vacuum chamber Recooler String system Components
Final Design Cryogenic and mechanical configurations
Francesco Cerutti, Andrea Tsinganis WP10 Energy deposition & R2E
Hervé Allain, R. van Weelderen (CERN)
Hervé Allain, R. van Weelderen (CERN)
SLHC –PP WP6 LHC IR Upgrade - Phase I.
Status of triplet cryostat and magnet support scheme
HL-LHC Aperture Update
Hervé Allain, R. van Weelderen (CERN)
A. Vande Craen, C. Eymin, M. Moretti, D. Ramos CERN
FCC Week 2017, Berlin Towards a conceptual design for FCC cryogenics
Status of cryostat integration and conceptual design
SPS cryogenic proximity equipment and SM18 validation
Cedric Garion, TE-VSC-DLM, WP12
Hervé Allain, R. van Weelderen (CERN)
Cooling Update (27 March 2014)
How does a cryogenic system cope with e-cloud induced heat load
DEBRIS IMPACT IN THE TAS-TRIPLET-D1 REGION
WP3 meeting Aug 21, 2015 V1.1 RECAP Francesco Cerutti.
Generic Cryo HX Options
Cooling aspects for Nb3Sn Inner Triplet quadrupoles and D1
IT & D1 HeII cooling-variants
Update on beam screen issues
Upgrade phase 1: Energy deposition in the triplet
Cooling aspects for Nb3Sn Inner Triplet quadrupoles and D1
PROPOSAL OF APERTURE FOR THE INNER TRIPLET
Revised estimates of heat loads and radiation damage in the IT and D1
Cryostats Some ideas for the new Q1 to Q3 Hi-Lumi WP3 meeting
Cooling Update (27 March 2014)
Beam Screens Cooling Update (1st Oktober 2014)
Status of QQXF cryostat
Cryogenic management of the LHC Run 2 dynamic heat loads
Presentation transcript:

Cooling Update (25 February 2014) Rob van Weelderen, Cryogenic Group, Technology Department, CERN

Overview Heat Loads + Explicit Design Margins IT - Bayonet Heat Exchangers Update of Update at next video meeting!

Placing of cryo-equipment considered (variant 4) actively cooled actively cooled Phase-separator & Piping entries/exits Phase-separator & Piping entries/exits QRL-jumper SM & QRL-jumper Phase-separator Piping entries/exits Q1,Q2a,Q2b,Q3: actively cooled for about 41 m, double-HXs needed CP,D1 : actively cooled for about 16 m, double-HXs needed

D1 & IT: heat loads Heat Loads: secondairies (W) 10 cm gap in ICs 10 cm gap in ICs2 50 cm gap in ICs 50 cm gap in ICs3 Magnet cold mass Beam screen Q1A + Q1B 100 175 170 Q2A + orbit corr. 95 60 65 Q2B + orbit corr. 115 80 120 Q3A + Q3B 140 CP 55 D1 90 Interconnects 20 105 Total 615 650 630 Courtesy L. S. ESPOSITO However these loads have to be corrected for the expected 10 % transparency of the Tungsten absorbers material with respect to the Pure Tungsten used for the Fluka calculations + additional loads -

D1 & IT: heat loads Q1-Q2A ~ 260 W, Q2B-Q1B ~ 310 W, D1+CP ~ 195 W, Corrected for 10 % tungsten transparancy Heat Loads: secondairies (W) 10 cm gap in ICs 10 cm gap in ICs2 50 cm gap in ICs 50 cm gap in ICs3 Magnet cold mass Beam screen Q1A + Q1B 117.5 157.5 117 153 Q2A + orbit corr. 101 54 106.5 58.5 Q2B + orbit corr. 123 72 128 Q3A + Q3B 148 CP 60.5 49.5 65.5 D1 96 Interconnects 34 126 30.5 94.5 beam-screen contact load 28 static heat load cryostat ends 16 electron cloud image currents ? Total 753 658 764 626 Q1-Q2A ~ 260 W, Q2B-Q1B ~ 310 W, D1+CP ~ 195 W, Beam screens ~ 785 W Assuming no electron cloud we have already IT+D1: 764 W Assuming image currents 0.5 W/m on BS (tbc) : 655 W What will be our design choice? Propose + 20 % margin ~ 920 W (686 @IT) at 1.9 K, 785 W at BS beam-screen contact load 0.5 W/m static heat load cryostat ends 16 W electron cloud image currents ?

Targeting 686 W means: HX inner diameter ~78 mm, Yoke hole ~88 mm

Targeting 686 W with split pumping option means: HX inner diameter ~57 mm, Yoke hole ~65 mm

Notes: At 800 W on the Q1-Q3B the split option starts to break down due to vanishing T-regulation margin (but can still “work”) D1 can extract ~250 W with 2x49mm ID HX’s (2x58mm Yoke holes): about 350-400 W with 2x68 ID HX’s (2x77mm Yoke holes). Total IT+CP+D1 heat extraction capacity using split pumping option 1050 W – 1200 W