Toward a Unified Theory of Visual Area V4

Slides:



Advertisements
Similar presentations
Heterogeneous Coding of Temporally Discounted Values in the Dorsal and Ventral Striatum during Intertemporal Choice  Xinying Cai, Soyoun Kim, Daeyeol.
Advertisements

Volume 63, Issue 3, Pages (August 2009)
Volume 26, Issue 24, Pages (December 2016)
Volume 33, Issue 3, Pages (January 2002)
Volume 53, Issue 1, Pages 9-16 (January 2007)
Volume 51, Issue 5, Pages (September 2006)
Volume 60, Issue 4, Pages (November 2008)
A Motion Direction Map in Macaque V2
A Human Extrastriate Area Functionally Homologous to Macaque V4
Linking Electrical Stimulation of Human Primary Visual Cortex, Size of Affected Cortical Area, Neuronal Responses, and Subjective Experience  Jonathan.
Volume 41, Issue 5, Pages (March 2004)
Volume 64, Issue 4, Pages (November 2009)
Coding of the Reach Vector in Parietal Area 5d
Volume 87, Issue 6, Pages (September 2015)
Volume 63, Issue 3, Pages (August 2009)
A Motion Direction Preference Map in Monkey V4
Volume 53, Issue 6, Pages (March 2007)
Uri Hasson, Michal Harel, Ifat Levy, Rafael Malach  Neuron 
Hongbo Yu, Brandon J. Farley, Dezhe Z. Jin, Mriganka Sur  Neuron 
A Channel for 3D Environmental Shape in Anterior Inferotemporal Cortex
Attentional Modulations Related to Spatial Gating but Not to Allocation of Limited Resources in Primate V1  Yuzhi Chen, Eyal Seidemann  Neuron  Volume.
A Map for Horizontal Disparity in Monkey V2
Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity  Rodrigo M. Braga, Randy L. Buckner 
Volume 95, Issue 1, Pages e3 (July 2017)
Volume 75, Issue 1, Pages (July 2012)
Jack Grinband, Joy Hirsch, Vincent P. Ferrera  Neuron 
Talia Konkle, Aude Oliva  Neuron  Volume 74, Issue 6, Pages (June 2012)
Dynamic Coding for Cognitive Control in Prefrontal Cortex
Integration of Touch and Sound in Auditory Cortex
Huihui Zhou, Robert Desimone  Neuron 
Jonathan J. Nassi, David C. Lyon, Edward M. Callaway  Neuron 
Attention Governs Action in the Primate Frontal Eye Field
Distributed Neural Systems for the Generation of Visual Images
The Functional Neuroanatomy of Object Agnosia: A Case Study
Franco Pestilli, Marisa Carrasco, David J. Heeger, Justin L. Gardner 
Katherine M. Armstrong, Jamie K. Fitzgerald, Tirin Moore  Neuron 
Feature-based attention in visual cortex
Sharon C. Furtak, Omar J. Ahmed, Rebecca D. Burwell  Neuron 
Memory: Enduring Traces of Perceptual and Reflective Attention
Integration of Local Features into Global Shapes
Perception Matches Selectivity in the Human Anterior Color Center
Serial, Covert Shifts of Attention during Visual Search Are Reflected by the Frontal Eye Fields and Correlated with Population Oscillations  Timothy J.
Volume 54, Issue 2, Pages (April 2007)
Guilhem Ibos, David J. Freedman  Neuron 
Xiaomo Chen, Marc Zirnsak, Tirin Moore  Cell Reports 
Franco Pestilli, Marisa Carrasco, David J. Heeger, Justin L. Gardner 
Volume 23, Issue 21, Pages (November 2013)
Visual Feature-Tolerance in the Reading Network
Stephen V. David, Benjamin Y. Hayden, James A. Mazer, Jack L. Gallant 
Michael A. Silver, Amitai Shenhav, Mark D'Esposito  Neuron 
Looking into the Black Box: New Directions in Neuroimaging
The Normalization Model of Attention
Volume 72, Issue 6, Pages (December 2011)
Vahe Poghosyan, Andreas A. Ioannides  Neuron 
Short-Term Memory for Figure-Ground Organization in the Visual Cortex
Neural and Computational Mechanisms of Action Processing: Interaction between Visual and Motor Representations  Martin A. Giese, Giacomo Rizzolatti  Neuron 
Specialized Color Modules in Macaque Extrastriate Cortex
Volume 87, Issue 6, Pages (September 2015)
Predictive Neural Coding of Reward Preference Involves Dissociable Responses in Human Ventral Midbrain and Ventral Striatum  John P. O'Doherty, Tony W.
John T. Serences, Geoffrey M. Boynton  Neuron 
Dynamic Shape Synthesis in Posterior Inferotemporal Cortex
Biased Associative Representations in Parietal Cortex
Neuronal Mechanisms for Illusory Brightness Perception in Humans
Volume 47, Issue 6, Pages (September 2005)
Kristy A. Sundberg, Jude F. Mitchell, John H. Reynolds  Neuron 
Population Responses to Contour Integration: Early Encoding of Discrete Elements and Late Perceptual Grouping  Ariel Gilad, Elhanan Meirovithz, Hamutal.
Supratim Ray, John H.R. Maunsell  Neuron 
Taosheng Liu, Franco Pestilli, Marisa Carrasco  Neuron 
Visual Feature-Tolerance in the Reading Network
Michael A. Silver, Amitai Shenhav, Mark D'Esposito  Neuron 
Presentation transcript:

Toward a Unified Theory of Visual Area V4 Anna W. Roe, Leonardo Chelazzi, Charles E. Connor, Bevil R. Conway, Ichiro Fujita, Jack L. Gallant, Haidong Lu, Wim Vanduffel  Neuron  Volume 74, Issue 1, Pages 12-29 (April 2012) DOI: 10.1016/j.neuron.2012.03.011 Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 1 V4 in Macaque Monkey (A) Ventral and dorsal pathways are indicated by red and blue arrows, respectively. V4 (shaded green) is a midtier area in the ventral pathway. Sulci: lunate, STS (superior temporal sulcus). +, −: superior, inferior fields. Adapted from Parker (2007). (B) fMRI visual field mapping of early visual areas reveal dorsal and ventral V4 and V4A (Janssen and W.V., unpublished data). Neuron 2012 74, 12-29DOI: (10.1016/j.neuron.2012.03.011) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 2 Color Regions in Macaque (A–C) Gray patches (A): several color globs identifed with fMRI seen in coronal (B) and sagittal (C) views. Color voxels: better activated by equiluminant color than black and white gratings. Electrode is seen targeting a color glob. (D) Shift in color preference of neurons along length of an electrode penetration through a glob (Conway and Tsao, 2009; Conway et al., 2010). Scale bar: 1 cm. D: dorsal, A; anterior. Neuron 2012 74, 12-29DOI: (10.1016/j.neuron.2012.03.011) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 3 Functional Organization in V4 Optical window over foveal V1, V2, and V4 (A). V4 fields of view in upper (B and C) and lower (D and E) white rectangles. Color/luminance (B and D) and orientation (D and F) maps. Composite map (F) illustrates segregation of color/lum (pixels in B and D coded pink) and orientation (pixels in C and E coded green) preference bands. Scale bar: 1 mm (Tanigawa et al., 2010). Neuron 2012 74, 12-29DOI: (10.1016/j.neuron.2012.03.011) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 4 Topography in V4 Color and Orientation Bands (A) Representation of iso-eccentricity across color (blue arrows) and orientation (red arrows) bands. (B) Representation of iso-polarity within each set of color and orientation bands. (Based on Tanigawa et al., 2010.) Neuron 2012 74, 12-29DOI: (10.1016/j.neuron.2012.03.011) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 5 Examples of Transformations in V4 (A) Color: color constancy (left) and lightness constancy (right). (B) Shape: curvature, sparse coding of curvature. (C) Depth: binocular correspondence, size constancy. (D) Motion: motion contrast-defined shape. Neuron 2012 74, 12-29DOI: (10.1016/j.neuron.2012.03.011) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 6 Transformations in V4 for Figure-Ground Segregation (A) Differentiation of In versus Out. (B) Surface-border integration (e.g., border assigned surface color in watercolor effect, Pinna et al., 2001). (C) Figural integration (e.g., integration of contour, and inference behind occluders). (D) Invariance of shape across multiple cues. (E) Context-dependency (e.g., face-vase). Neuron 2012 74, 12-29DOI: (10.1016/j.neuron.2012.03.011) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 7 Feature-Dependent Sorting (A) Apples and peppers can be sorted based on color while disregarding shape (top-left, bottom-right), or based on shape while disregarding color (top-right and bottom-left). One feature is attended and the other must be ignored. (Courtesy of G. Bertini and M. Veronese.) (B) A single V4 neuron showing modulation of responses to colored oriented stimuli. Monkeys were trained to respond Left to some color-orient pairings and to respond Right to other pairings. The neuronal firing rate shifts depending on instruction to attend to color or to orientation (modified from Mirabella et al., 2007). See text for further details. Neuron 2012 74, 12-29DOI: (10.1016/j.neuron.2012.03.011) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 8 Means of Attentional Modulation in V4 (A) Attention can enhance neuronal response within attended region. There is ample evidence for this in spatial attention tasks. Within a topographic region of V4, all functional domains within this region (red disk) exhibit enhanced activation (Tanigawa and A.W.R., unpublished data). (B) There is accumulating evidence that attention can modulate synchrony between neurons. Here, we depict during a task requiring attention to color, enhancement of synchrony in a network of color domains in V4 (heavy lines) and either no change or decrement in synchrony in a network of orientation domains (light lines). Enhancement of gamma band oscillations has been reported both for tasks requiring feature attention and those involving spatial attention. Neuron 2012 74, 12-29DOI: (10.1016/j.neuron.2012.03.011) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 9 Schematic of V4 Functional Organization as Common Subtrate for Object Feature Encoding and Attentional Selection Both feature representation and attention are achieved by selection of networks in V4. Such selection results in enhancement of domain networks, shaped by both top-down (FEF) and bottom-up (V1/V2) influences. Although not depicted, note that during feature attention, such influences can extend beyond the locus of spatial attention. Gray disk: locus of spatial attention. Colored circles: color or luminance domains. White circles: orientation domains. Neuron 2012 74, 12-29DOI: (10.1016/j.neuron.2012.03.011) Copyright © 2012 Elsevier Inc. Terms and Conditions