Vamos + Exogam Spectrometer

Slides:



Advertisements
Similar presentations
Kerstin Sonnabend, IKP, TU Darmstadt S-DALINAC - Nuclear Astrophysics Nuclear Astrophysics at the Darmstadt superconducting electron linear accelerator.
Advertisements

Recent Results from the Collaboration E. J. Downie DNP Meeting October 2009.
The fission of a heavy fissile nucleus ( A, Z ) is the splitting of this nucleus into 2 fragments, called primary fragments A’ 1 and A’ 2. They are excited.
Application of heavy charged particle spectrometry 1) Identification of superheavy elements by means of alpha decay sequence 2) Study of hot and dense.
Multinucleon Transfer Reactions – a New Way to Exotic Nuclei? Sophie Heinz GSI Helmholtzzentrum and Justus-Liebig Universität Gießen Trento, May ,
SKS Minus Detectors in detail Tohoku Univ. K.Shirotori.
Direct Reactions at Eurisol In the light of the TIARA+MUST2 campaign at GANIL B. Fernández-Domínguez.
Direct Reactions at Eurisol In the light of the TIARA+MUST2 campaign at GANIL B. Fernández-Domínguez.
1 An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005 Georg P. Berg.
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 106 nd Session, 24 September 2009, Dubna.
PC4250 Secondary Ion Mass Spectrometry (SIMS). What is SIMS? SIMS is a surface analysis technique used to characterize the surface and sub-surface region.
SUPERB Separator for Unique Products of Experiments with Radioactive Beams Matt Amthor Bucknell University ReA12 Recoil Separator Workshop – July 12, 2014.
R&D for R3B/EXL silicon spectrometers, ELISe in-ring instrumentation based on planar Si and CVDD Alexander Gorshkov Flerov Laboratory of Nuclear Reactions.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
ExternalTargetFacility at CSR FRIB-China East Lansing Sun, Zhiyu Institute of Modern Physics, CAS.
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
Development of slowed down beams at GSI P.Boutachkov GSI Physics objectives Proposed solution Test experiments Future Test setup for slowed down beams.
NUSTAR Nuclear Structure, Astrophysics, Reactions NUSTAR is the biggest collaboration in FAIR The collaboration unites 450 scientists from 98 institutions.
Heavy Ion Laboratory Warsaw University Jarosław Choiński.
Primary beam production target ESR The GSI Radioactive Beam Facilities RISING high-resolution Ge  -spectrometer.
1 Hypernuclear spectroscopy up to medium mass region through the (e,e’K + ) reaction in JLab Mizuki Sumihama For HKS collaboration Department of Physics.
Shape Evolution and Shape Coexistence in Neutron Rich A~100 Nuclei
Yosuke Watanabe….. University of Tokyo, RIKEN A, KEK C, Development of a GEM tracker for E16 J-PARC 1 Thanks to ???????????
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
R&D on complementary detectors and devices for nuclear structure and reaction mechanism studies R&D on complementary detectors and devices for nuclear.
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
RITU and the new separator at Jyväskylä J. Uusitalo, J. Sarén, M. Leino RITU and γ-groups University of Jyväskylä, Department of Physics.
Production of Beams: - Stable beams from Be-U, 48 Ca ~ pps, 238 U ~ pps ~60 A.MeV for Ni -RIB in-target fragmentation Noble gas (i.e. 6 He.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Test of PRISMA in Gas Filled Mode B.Guiot for PRISMA collaboration INFN – Laboratori Nazionali di Legnaro.
REQUIREMENTS for Zero-Degree Ion Selection in TRANSFER Wilton Catford University of Surrey, UK & SHARC collabs.
Observation of new neutron-deficient multinucleon transfer reactions
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
Design and Development of a Trochoidal Mass Separator at the Berkeley Gas-filled Separator J.M. Gates, K.E. Gregorich, G.K. Pang, N.E. Esker and H. Nitsche.
Spectrometer optics studies and target development for the 208Pb(e,e’p) experiment in Hall A at Jefferson Lab, GUIDO M. URCIUOLI, INFN, Roma, Italy, JUAN.
Interaction Region Design and Detector Integration V.S. Morozov for EIC Study Group at JLAB 2 nd Mini-Workshop on MEIC Interaction Region Design JLab,
Detector / Interaction Region Integration Vasiliy Morozov, Charles Hyde, Pawel Nadel-Turonski Joint CASA/Accelerator and Nuclear Physics MEIC/ELIC Meeting.
VAMOS « Hot » results and perspectives * Spectroscopy of n-rich nuclei produced by fission * New gas-filled spectrometer-separator for fusion Getting ready.
A realistic simulation of the AGATA Demonstrator +PRISMA Spectrometer Elif INCE, Istanbul University 7 th AGATA Week, July 2008.
Reaction dynamics and nuclear structure of moderately neutron-rich Ne isotopes by heavy ion reactions Simone Bottoni University of Milan & KU Leuven INPC.
Nuclear shape evolution through lifetime measurement in neutron rich nuclei Lucie Grente Colloque GANIL 2013 CEA Saclay, France DSM/IRFU/SPhN September.
Ancillary/Complementary detectors for the AD at LNL.
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
Understanding the 3 He Nuclei: Asymmetry Measurements in Quasi- Elastic Ge Jin University of Virginia For the E Collaboration.
STATUS REPORT ON THE “MASHA” SET-UP A.M.Rodin, A.V.Belozerov, S.N.Dmitriev, Yu.Ts.Oganessian, R.N.Sagaidak, V.S.Salamatin, S.V.Stepantsov, D.V.Vanin PAC.
Entry distributions for fragments produced in deep-inelastic collisions with stable and radioactive beams For the PARIS collaboration W. Królas, M. Kmiecik,
Young Researchers Session in IFIN-HH 2016
Interaction Region and Detector
Efficient transfer reaction method with RI BEams
The Transition Radiation Detector for the PAMELA Experiment
Jose Javier Valiente Dobón LNL (INFN)
IF Separator Design of RAON
A.Gadea (IFIC, CSIC-University of Valencia)
Giant Monopole Resonance
Prototype production and test
MAGIX Detectors Overview
DSSSD for b decay investigations of heavy neutron-rich isotopes
In-beam and isomer spectroscopy in the third island of inversion at EXOGAM+VAMOS E.Clément (GANIL)
Forward (ion-SIDE) Tagging: Motivations, ConCepT, Performance
MINOS: a new vertex tracker for in-flight γ-ray spectroscopy
1. Introduction Secondary Heavy charged particle (fragment) production
Specifications for the JLEIC IR Magnets
Ion-Side Small Angle Detection Forward, Far-Forward, & Ultra-Forward
Ch. THEISEN – CEA Saclay MUSETT: the segmented Si array for the focal plane of the VAMOS spectrometer Ch. THEISEN – CEA Saclay.
Variable Mode High Acceptance Spectrometer
Recent Highlights and Future Plans at VAMOS
Physics cases for tracking
Presentation transcript:

Vamos + Exogam Spectrometer

Goals VAMOS was designed for spectroscopy studies using different reaction types in particular induced by low intensity radioactive beams Advantages large acceptance variable mode Coupling with EXOGAM TIARA, DIAMANT INDRA (Neutron Wall) Main working modes magnetic spectrometer separator

VAMOS Spectrometer Schematic View QUADRUPOLES EXOGAM BEAM Focal Plane detection DIPOLE Velocity Filter

VAMOS in reality

Specifications Quadrupoles (850 A) Q1 Q2 Magnetic length [m] 0.6 0.9 Field gradient [T/m] 7.0 2.4 Bρ full(reduced) Ω [Tm] 1.8 (2.2) Dipole (850 A) Magnetic field [T] 1.2 Magnetic length [m] 1.57 Deflection radius [m] 1.5 Bρ at 60° [Tm] 1.8 Wien Filter Length [m] 1 Gap [m] 0.15 E [kV] 300 B [T] 0.2

Specifications Path length 7.3 m Rotation 0°-90° Solid angle 100 msr Translation 0.4-1.2 m Momentum ±7 % Focal Plane Dispersion 2.5 cm/% Angle 0°-60° Example: Θ : -100, +100 [mrad] Bρ : (0.97,1,1.03)BNc

Light/Fast Ion Detection Dispersive Plane Drift Chamber X: charge distribution 2 x 64 pads (6.3x50) mm XFWHM ~200 μm Y: drift time YFWHM ~ 500 μm Ionisation Chamber 2 x 7 pads (50x50) mm 1 x 7 pads (50x 170)mm ΔEFWHM ~ 3% Plastic Detector EFWHM ~ 4% Silicon Wall

Heavy/Slow Ion Detection Ionisation Chamber Secondary electron Detector Se-D XFWHM ~ 1 mm YFWHM ~ 2 mm TFWHM ~ 300 ps Mylar emissive foil

VAMOS Measurement Resolution Θ 0.1° Φ 0.3° Bρ 0.5% M/q 0.5% q 1/30 Θ 0.1° Φ 0.3° Bρ 0.5% M/q 0.5% q 1/30 M 1/200 Z 1/30 φf θf V Bρ M/q M q Z φ θ Yf Xf TOF ΔE E M/q ~ Bρ x TOF M ~ E x TOF2 Z2 ~ E x ΔE ~ ΔE/TOF2

EXOGAM 12 closely packed Compton suppressed Ge segmented clover detectors Efficiency ~ 12% at 1.33 MeV

Deep Inelastic Collisions measured with VAMOS dE vs E

Deep Inelastic Collisions measured with VAMOS M vs M/Q

Search for 2+ in 54Ca magicity at N=34 -10 -5 f5/2 p1/2 p3/2 f7/2 48Ca 54Ca Large experimental effort to estimate this gap from studies of nearby nuclei. Direct information on this gap is the 2+ energy. Pronounced shell gap in 54Ca

Identification spectra dE vs E dE vs E M vs M/Q

Spectra of 50Ca γ-γ projection γ-γ projection γ-γ gate

Spectra of 52Ca

Recoil (Decay) Tagging Reaction: 18O@95MeV + 208Pb -> 222Th + 4n Time stamping: Time correlations measured using the universal clock CENTRUM SetUp: EXOGAM VAMOS at 0º with focal plane at 10º using WIEN filter focal plane detection: SeD, SiWall

Recoil Decay Tagging