Generic Cryo HX Options

Slides:



Advertisements
Similar presentations
Recap of heat loads and peak doses from HL-LHC Q1 to Q7 L.S. Esposito, F. Cerutti HL-LHC WP3 meeting, 22 May 2014.
Advertisements

D1 and MCBXC pressurized superfluid helium channels sizing for heat extraction Rob van Weelderen
FLUKA status and plan Sixth TLEP workshop CERN, October 2013 F. Cerutti #, A. Ferrari #, L. Lari *, A. Mereghetti # # EN Dept. & *BE Dept.
MPP, 18 th of June MPP 18 th of June 2008 Outcome of special CPP meeting of on Stand-Alone Cryostats Helium Level Issue R. van Weelderen.
24/01/08Energy deposition, LIUWG, Elena Wildner1 Upgrade phase 1: Energy deposition in the triplet Elena Wildner Francesco Cerutti Marco Mauri.
ENERGY DEPOSITION IN HYBRID NbTi/Nb 3 Sn TRIPLET CONFIGURATIONS OF THE LHC PHASE I UPGRADE FermilabAccelerator Physics Center Nikolai Mokhov, Fermilab.
1 Update on Focus Coil Design and Configuration M. A. Green, G. Barr, W. Lau, R. S. Senanayake, and S. Q. Yang University of Oxford Department of Physics.
Crab Cavities in IR1 and IR5 Some considerations on tunnel integration What will be the situation in the tunnel after the LHC IR Phase-1 Upgrade. What.
TOTEM Collaboration Meeting, Feb. 2005, F. Haug, CERN Cooling System for TOTEM Friedrich Haug and Jihao Wu Cryogenics for Experiments CERN TOTEM Collaboration.
The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme,
1 CO 2 cooling of an endplate with Timepix readout Bart Verlaat, Nikhef LCTPC collaboration meeting DESY, 22 September
E. Todesco PROPOSAL OF APERTURE FOR THE INNER TRIPLET E. Todesco CERN, Geneva Switzerland With relevant inputs from colleagues F. Cerutti, S. Fartoukh,
SCU Layout Concept - Minimal Segmentation Joel Fuerst (ANL) SCU 3-Lab Review Meeting Dec. 16, 2014.
Focusing Lens for the SSR1 Section of PXIE Preliminary analysis of main options 3/13/2012I. Terechkine1.
Technical agreement n 3 New SC Magnets activities P. Fessia (G. De Rijk), D. Reynet, J.M Rifflet.
56 MHz SRF Cavity Cryostat support system and Shielding C. Pai
Cooling and thermal analysis HL-LHC/LARP International Review of the Inner Triples Quadrupoles (MQXF) Design: dec 2014 / CERN R. van Weelderen, G.
Joint IR Studies: Operating Margins Nikolai Mokhov Fermilab bnl - fnal- lbnl - slac US LHC Accelerator Research Program LARP Collaboration Meeting SLAC.
Update on Micro Channel Cooling Collaboration Meeting , G. Nüßle.
R. van Weelderen, LIUWG, IT upgrade phase I: Status of cryogenic scheme evolution (in work) Outline - Old & new layout - Design constraints.
4/27/06 1 US LHC ACCELERATOR RESEARCH PROGRAM brookhaven - fermilab – berkeley - slac US LARP Inner Triplet Cryogenics and Heat Transfer LARP Collaboration.
10/3/05 1 US LHC ACCELERATOR RESEARCH PROGRAM brookhaven - fermilab – berkeley - slac US LARP Inner Triplet Cryogenics and Heat Transfer Roger Rabehl Fermilab.
AT-VAC SPC Nicolaas KOS Beam Screens for Inner Triplet Magnets LHC Upgrade Phase 1 Nicolaas KOS  LHC Upgrade phase 1  Inner triplet BS Requirements.
SPL cryomodule specification meeting, CERN 19th October 2010 SPL cryomodule specification: Goals of the meeting SPL cryomodule specification: Goals of.
E. Todesco LAYOUT FOR INTERACTION REGIONS IN HI LUMI LHC E. Todesco CERN, Geneva Switzerland Acknowledgements: B. Dalena, M. Giovannozzi, R. De Maria,
E. Todesco HL LHC LAYOUT FROM Interaction POINT TO SEPARATION DIPOLE E. Todesco CERN, Geneva Switzerland Acknowledgements: B. Dalena, M. Giovannozzi, R.
Specific QXF cold- mass requirements to ensure a robust cooling by superfluid helium 4th Joint HiLumi LHC-LARP Annual Meeting: R. van Weelderen,
Super Fragment Separator (Super-FRS) Machine and Magnets H. Leibrock, GSI Darmstadt Review on Cryogenics, February 27th, 2012, GSI Darmstadt.
CW Cryomodules for Project X Yuriy Orlov, Tom Nicol, and Tom Peterson Cryomodules for Project X, 14 June 2013Page 1.
Low Beta Cryomodule Development at Fermilab Tom Nicol March 2, 2011.
Cryogenics for SuperB IR Magnets J. G. Weisend II SLAC National Accelerator Lab.
GSI Helmholtzzentrum für Schwerionenforschung GmbH Super-FRS magnet configurations.
The Super-FRS Multiplet, Magnetic and Cryogenic requirements
CERN, 11th November 2011 Hi-lumi meeting
SIS 100 Vacuum chamber Recooler String system Components
Final doublet: future activity plan
Hervé Allain, R. van Weelderen (CERN)
Hervé Allain, R. van Weelderen (CERN)
HL-LHC IT STRING and Series test of SC link
SLHC –PP WP6 LHC IR Upgrade - Phase I.
HL-LHC Aperture Update
Hervé Allain, R. van Weelderen (CERN)
Status of cryostat integration and conceptual design
Pixel cooling specifications
Cedric Garion, TE-VSC-DLM, WP12
Hervé Allain, R. van Weelderen (CERN)
Q0 magnet, cooling, support ideas
Magnet Options for Q1 and Q2 Revisited
Nb-Ti Strand and 2D magnet coil
Cable and Strand test facility
The 11T cryo-assembly: summary of design and integration aspects
Cooling Update (27 March 2014)
WP3 meeting Aug 21, 2015 V1.1 RECAP Francesco Cerutti.
Mathew C. Wright October 2016
Cooling Update (25 February 2014)
Cooling aspects for Nb3Sn Inner Triplet quadrupoles and D1
HIE-LINAC status report
IT & D1 HeII cooling-variants
Upgrade phase 1: Energy deposition in the triplet
Cooling aspects for Nb3Sn Inner Triplet quadrupoles and D1
PROPOSAL OF APERTURE FOR THE INNER TRIPLET
Cryostats Some ideas for the new Q1 to Q3 Hi-Lumi WP3 meeting
CF testing pipe & testing plan
Thursday Summary of Working Group I
Cooling Update (27 March 2014)
Beam Screens Cooling Update (1st Oktober 2014)
IR Beam Transport Status
Status of QQXF cryostat
F.Pasdeloup, H.Prin, L. Williams
J. Fleiter, S. C. Hopkins, A. Ballarino
Presentation transcript:

Generic Cryo HX Options R. van Weelderen (CERN)

Cryo Generic Layout Possibilities Inner triplets will be actively cooled via 2 parallel HX D1 and MCBXC cooling could be either active as well or passive via conduction Options considered: D1 and MCBXC passively cooled D1 passively cooled All actively cooled Room for cryo services needed at: Q3 to MCBXC (option 1) MCBXC to D1 (option 2) D1, non-IP end (option 3) Entry at D1, non-IP end + D1 bypass to a)/b) (option 1/2) Magnet Nb3Sn, length (m) NbTi, variation (m) Q1 8.5 10.63 Q1 to MCBXD 1.92 MCBXD 1.31 MCBXD to Q2a 0.42 Q2a 6.77 8.69 Q2a to Q2b 2.05 1.91 Q2b Q2b to MCBXD MCBXD to Q3 Q3 Q3 to MCBXC MCBXC 2.00 MCBXC to D1 4.28 D1 (magnetic length+2x0.5m) 8.65 7.3 Total 56.7 63.4 D1 + MCBXC conductive length 16.9 15.5 D1 conductive length 12.9 11.6

Two Phase HX Inner Diameter Options Assumptions: Total heat load of D1 + MCBXC and IT: 500 W in all configurations Cold source at IT pumping line: 1.800 K T-budget for HX of actively cooled magnets: up to 2.000 K T-budget for conduction cooling: 50 mK (from 2.050 K to 2.000 K)   D1 and MCBXC (passive) D1 (passive) All (active) D1 no HX, Free area: 175 cm2 no HX, Free area: 120 cm2 2 x HX: 68 mm ID, Free area t.b.d. MCBXC IT Consequences: The two-phase HX sizing is mainly dependent on total heat load: 68 mm ID in all cases For all actively cooled magnets and interconnects the HX’s must be fully continuous (no bends allowed!) Thermal budget for actively cooled magnets (coil – HX): ~ 170 mK max (Tλ – 2.000 K) Thermal budget for passively cooled magnets (coil – HX): ~120 mK max (Tλ – 2.050 K) Piping through magnets & cryostats to be sized (complete PID to be made) depending on choice of Cryo implementation