Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro

Slides:



Advertisements
Similar presentations
Shew-Meei Sheu1, Jiunn-Jong Wu2,and Bor-Shyang Sheu3
Advertisements

Follow-up Testing After Treatment of Helicobacter Pylori Infections: Cautions, Caveats, and Recommendations  Taraq A. Attumi, MD, David Y. Graham, MD 
Gastrointestinal pathogens: Helicobacter pylori
Figure 2 Inflammatory pathways affecting hepatic insulin resistance
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Enteroids can model transport physiology
promotes the oncogenic activity of CagA
Figure 1 Differential immune responses in the gut (oral tolerance)
Figure 5 Dendritic cells in liver inflammation
Figure 1 Contribution of the gut microbiota
Figure 4 Activation of clopidogrel via cytochrome P450
Figure 5 Therapeutic paradigms for interfering with the brain–gut axis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Gut microorganisms at the intersection of several diseases
Figure 5 Lipid droplet consumption
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 The microbiome–gut–brain axis
Figure 7 Clinical options for HCC therapy
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Biosimilar development process
Figure 3 The 'leaky gut' hypothesis
Figure 2 Effect of PPIs on gastric physiology
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Giant lipid droplet formation
Figure 1 Schematic outlining the results of Buffington et al.
Figure 6 Combination therapy for HCC
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Switching of biologic agents and biosimilars
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Follow-up Testing After Treatment of Helicobacter Pylori Infections: Cautions, Caveats, and Recommendations  Taraq A. Attumi, MD, David Y. Graham, MD 
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
to the liver and promote patient-derived xenograft tumour growth
Figure 7 Example colonic high-resolution manometry
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Environmental factors contributing to IBD pathogenesis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Clinical algorithms in the management of NASH and diabetes mellitus Figure 3 | Clinical algorithms in the management of NASH and diabetes mellitus.
Figure 2 13C-octanoic acid gastric emptying breath test
Figure 3 Serotonin influences many peripheral tissues
in the UK (1961–2012), France (1961–2014) and Italy (1961–2010)
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Possible therapeutic targets to decrease hepatic steatosis
Figure 2 Pro-inflammatory and anti-inflammatory effects of the gut microbiota Figure 2 | Pro-inflammatory and anti-inflammatory effects of the gut microbiota.
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Strategies to improve liver regeneration
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 5 Systems biological model of IBS
Figure 5 PPIs and adverse events with proven and unproven causality
Figure 4 Local species pools that contribute to the
Figure 1 Cancer stem cell plasticity and stem cell homeostasis in the gut Figure 1 | Cancer stem cell plasticity and stem cell homeostasis in the gut.
Figure 1 Endoscopic appearance of fundic gland polyps
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 New therapeutic approaches in IBD therapy based on blockade of T-cell homing and retention Figure 1 | New therapeutic approaches in IBD therapy.
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Bile acid-induced hepatic inflammation and carcinogenesis
Figure 2 Lifelong influences on the gut microbiome from
Figure 1 NAFLD pathogenesis
Figure 1 Colonic inflammation in IBD and link to the gut microbiota
Figure 4 Bile-acid-induced TGR5 signalling pathways in macrophages
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Relationships between H. pylori, inflammation, and acid secretion.
Schematic representation of the relationships between acid resistance (urease activity and urea transport), nitrogen metabolism (ammonia production), metal.
Presentation transcript:

Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2017.117 Figure 3 Effect of acid inhibition with PPIs on Helicobacter pylori gastritis Figure 3 | Effect of acid inhibition with PPIs on Helicobacter pylori gastritis. A shift from antrum-predominant inflammation to fundus–corpus-predominant inflammation occurs with acid inhibition via proton-pump inhibitors (PPIs). The occurrence of Helicobacter pylori gastritis varies according to H. pylori virulence and host susceptibility genes and is related to diverse clinical outcomes. Corpus-predominant gastritis is associated with a markedly higher risk of developing malignancy than antrum-predominant gastritis. PPIs alter the gastric milieu by contributing to increased IL-1β, a potent pro-inflammatory factor, and ammonia (NH4). The catalytic activity of H. pylori urease on urea leads to the formation of NH4, and PPIs could further promote the production of ammonia through the biological nitrogen cycle involving other gut bacteria. IL-1β and NH4 contribute to as well as result from the fact that H. pylori shifts from the antrum to the corpus. Consequently, H. pylori might even totally disappear from the antrum, but it increases the inflammation in the fundus–corpus. Malfertheiner, P. et al. (2017) Proton-pump inhibitors: understanding the complications and risks Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2017.117