Radial propagation of Type-I ELMs on JET

Slides:



Advertisements
Similar presentations
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Advertisements

Korean Modeling Effort : C2 Code J.M. Park NFRC/ORNL In collaboration with Sun Hee Kim, Ki Min Kim, Hyun-Sun Han, Sang Hee Hong Seoul National University.
Biased Electrodes for SOL Control in NSTX S.J. Zweben, R.J. Maqueda*, L. Roquemore, C.E. Bush**, R. Kaita, R.J. Marsala, Y. Raitses, R.H. Cohen***, D.D.
ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
TORE SUPRA Association EURATOM-CEA Département de Recherches sur la Fusion Contrôlée CEA - CADARACHE Saint-Paul-lez-Durance FRANCE Nonlinear LH Wave.
Inter-ELM Edge Profile and Ion Transport Evolution on DIII-D John-Patrick Floyd, W. M. Stacey, S. Mellard (Georgia Tech), and R. J. Groebner (General Atomics)
SUGGESTED DIII-D RESEARCH FOCUS ON PEDESTAL/BOUNDARY PHYSICS Bill Stacey Georgia Tech Presented at DIII-D Planning Meeting
ELM Filament Propogation Measurements on MAST A. Kirk a, N. B. Ayed b, B. Dudson c, R. Scannel d (a) UKAEA Culham, (b) University of York, (c) University.
A. Kirk, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 2004 The structure of ELMS and the distribution of transient power loads in MAST Presented.
Laser Magnetized Plasma Interactions for the Creation of Solid Density Warm (~200 eV) Matter M.S. R. Presura, Y. Sentoku, A. Kemp, C. Plechaty,
Comparison of drift simulation with D,Chi different in div.legs.
W. Fundamenski, IAEA FEC 2004, Vilamoura, Portugal1 Power Exhaust on JET: An Overview of Dedicated Experiments W.Fundamenski, P.Andrew, T.Eich.
49th Annual Meeting of the Division of Plasma Physics, November , 2007, Orlando, Florida Ion Temperature Measurements and Impurity Radiation in.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
10th ITPA meeting on SOL & divertor physics, Avila, Spain, Jan 7-10, 2008 Arne Kallenbach 1/15 Prediction of wall fluxes and implications for ITER limiters.
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
Correlation Analysis of Electrostatic Fluctuation between Central and End Cells in GAMMA 10 Y. Miyata, M. Yoshikawa, F. Yaguchi, M. Ichimura, T. Murakami.
10th ITPA conference, Avila, 7-10 Jan Effects of High Energy Ions Accelerated in front of ICRF Antennas in LHD S. Masuzaki on behalf of the LHD Experimental.
DSOL ITPA meeting, Toronto W. Fundamenski8/11/2006 TF-E Size and amplitude scaling of ELM-wall interaction on JET and ITER W.Fundamenski and O.E.Garcia.
NSTX-U NSTX-U PAC-31 Response to Questions – Day 1 Summary of Answers Q: Maximum pulse length at 1MA, 0.75T, 1 st year parameters? –A1: Full 5 seconds.
ITPA DSOL meeting, Toronto W. Fundamenski9/11/2006 TF-E Introduction to ELM power exhaust: Overview of experimental observations W.Fundamenski Euratom/UKAEA.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
1 Max-Planck-Institut für Plasmaphysik 10th ITPA meeting on SOL/Divertor Physics, 8/1/08, Avila ELM resolved measurements of W sputtering MPI für Plasmaphysik.
2 The Neutral Particle Analyzer (NPA) on NSTX Scans Horizontally Over a Wide Range of Tangency Angles Covers Thermal ( keV) and Energetic Ion.
Two problems with gas discharges 1.Anomalous skin depth in ICPs 2.Electron diffusion across magnetic fields Problem 1: Density does not peak near the.
CHI Run Summary for March 10-12, 31 & April 9, 2008 Flux savings from inductive drive of a Transient CHI started plasma (XP817) R. Raman, B.A. Nelson,
1) Disruption heat loading 2) Progress on time-dependent modeling C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD, 4/4/2011.
R. A. Pitts et al. 1 (12) IAEA, Chengdu Oct ELM transport in the JET scrape-off layer R. A. Pitts, P. Andrew, G. Arnoux, T.Eich, W. Fundamenski,
HT-7 ASIPP The Influence of Neutral Particles on Edge Turbulence and Confinement in the HT-7 Tokamak Mei Song, B. N. Wan, G. S. Xu, B. L. Ling, C. F. Li.
Preliminary results on simulation of fast-ion instability at 3 km LBNL damping ring 21 April 2005 Pohang Accelerator Laboratory Eun-San Kim.
Heat Loading in ARIES Power Plants: Steady State, Transient and Off-Normal C. E. Kessel 1, M. A. Tillack 2, and J. P. Blanchard 3 1 Princeton Plasma Physics.
A. Vaivads, M. André, S. Buchert, N. Cornilleau-Wehrlin, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud, C. Mouikis, T. Phan, B. N. Rogers, J.-E.
RFX-mod Program Workshop, Padova, January Current filaments in turbulent magnetized plasmas E. Martines.
D. Tskhakaya, LH SOL Generated Fast Particles Meeting IPP.CR, Prague December 16-17, 2004 Quasi-PIC modelling of electron acceleration in front of the.
FEC 2006 Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1, D.L. Brower.
11/12/2004J. Boedo APS 04 Reciprocating Probe Edge/SOL Profiles in NSTX J. Boedo H. Kugel, D. Rudakov, H. Ji, T. Carter, N. Crocker, D. Rudakov, M. Umansky,
ELM propagation in Low- and High-field-side SOLs on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga 1), N.Oyama 1), S.Takamura.
GOLEM operation based on some results from CASTOR
بسمه تعالی Fast Imaging of turbulent plasmas in the GyM device D.Iraji, D.Ricci, G.Granucci, S.Garavaglia, A.Cremona IFP-CNR-Milan 7 th Workshop on Fusion.
ELM propagation and fluctuations characteristics in H- and L-mode SOL plasmas on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga.
Fast response of the divertor plasma and PWI at ELMs in JT-60U 1. Temporal evolutions of electron temperature, density and carbon flux at ELMs (outer divertor)
An Estimation of Critical Electron Density at Just Starting Breakdown in Gases Mase. H Professor Emeritus of Ibaraki University.
Scaling experiments of perturbative impurity transport in NSTX D. Stutman, M. Finkenthal Johns Hopkins University J. Menard, E. Synakowski, B. Leblanc,R.
Radiation divertor experiments in the HL-2A tokamak L.W. Yan, W.Y. Hong, M.X. Wang, J. Cheng, J. Qian, Y.D. Pan, Y. Zhou, W. Li, K.J. Zhao, Z. Cao, Q.W.
1 Estimating the upper wall loading in ITER Peter Stangeby with help from J Boedo 1, D Rudikov 1, A Leonard 1 and W Fundamenski 2 DIII-D 1 JET 2 10 th.
Plan V. Rozhansky, E. Kaveeva St.Petersburg State Polytechnical University, , Polytechnicheskaya 29, St.Petersburg, Russia Poloidal and Toroidal.
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
Hard X-rays from Superthermal Electrons in the HSX Stellarator Preliminary Examination for Ali E. Abdou Student at the Department of Engineering Physics.
C. Deng and D.L. Brower University of California, Los Angeles J. Canik, D.T. Anderson, F.S.B. Anderson and the HSX Group University of Wisconsin-Madison.
Gravity Wave Turbulence in Wave Tanks S Lukaschuk 1, S Nazarenko 2 1 Fluid Dynamics Laboratory, University of Hull 2 Mathematics Institute, University.
Starting point: Langmuir’s OML theory
Disruption Specification in ARIES
Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik1, D.L. Brower2, C. Deng2,
Features of Divertor Plasmas in W7-AS
N2 Vibrational Temperature, Gas Temperature,
Recycling and impurity retention in high-density,
Finite difference code for 3D edge modelling
Abstract Langmuir probes in low-density RF plasmas sometimes show peculiar I-V characteristics with no electron saturation. This is due to the space potential.
C. E. Kessel1, M. S. Tillack2, and J. P. Blanchard3
LH Generated Hot Spots on the JET Divertor
ITER consequences of JET 13C migration experiments Jim Strachan, PPPL Jan. 7, 2008 Modeled JET 13C migration for last 2 years- EPS 07 and NF paper in prep.
Temperature Is a property of an object which determines the direction of net heat flow when an object is placed in contact with some other object. Heat.
Part VI:Viscous flows, Re<<1
Theoretical Model of ITER High Resolution H-alpha Spectroscopy for a Strong Divertor Stray Light and Validation Against JET-ILW Experiments.
Electron Acoustic Waves in Pure Ion Plasmas F. Anderegg C. F
Periodic Acceleration of Electrons in Solar Flares
Ioffe Summary Fast MHD oscillations observed on the TUMAN-3M in absence of energetic ions Bursts of the oscillations correlate with saw-tooth crashes and.
Near-Field Physics of Lower-Hybrid Wave Coupling to Long-Pulse, High Temperature Plasmas in Tore Supra A dynamic Stark effect measurement performed near.
Presentation transcript:

Radial propagation of Type-I ELMs on JET W.Fundamenski, W.Sailer 15.7.2003 ITPA, St.Petersburg 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Radial propagation of Type-I ELMs on JET, W.Fundamenski Outer B-coil Inner B-coil LM11 LM12 LM14 LM15 LM18 LM19 LM21, 22 Soft X-ray Vertical D 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Radial extent of the SOL density (/t = 0) || G|| +  G = 0 G|| = nv||  D||||n G = nv  Dn || diffusion: tD ~ L||2/D|| || convection: tv ~ L||/Mcs net || transport: t|| = min (tD , tv) ~ tv  diffusion: ln,D ~ (Dt||)1/2  convection: ln,v ~ vt|| 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Radial extent of the SOL energy (/t = 0) || q|| + q = 0, a = {i,e} q|| = ½(mv2+ 5T)nv||  nc||||T q = ½(mv2+ 5T)nv  ncT || conduction: tc ~ L||2/c|| , c||e >> c||i || convection: tv ~ L||/Mcs net || transport: t|| = min (tD , 5/2tc)  conduction: lq,c ~ (ct||)1/2  convection: lq,v ~ vt|| 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Experimental observation of exponential decay 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

RCP probe + ELMs: MkIIGB, 45490 Type-I ELMs with 8 MW interact with probe upto limiter radius No ELMs observed beyond 20 mm into the limiter shadow Consistent with ~ 4 cm decay length 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Transient evolution of SOL density (/t  0) n/t + || G|| +  G = 0 || G|| = nv||  D||||n  n /t|| G = nv  Dn  dn/dt = 0, d/dt = /t + v/r  /r (D/r) + 1/ t||, Greens function is a convected, gaussian wave-packet 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Slow diffusion (A=1, v=1, D=0.1) no || loss (t|| = 1000) slow diffusion (D= 0.1) strong || loss (t|| = 1) slow diffusion (D= 0.1) 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Moderate diffusion (A=1, v=1, D=1) no || loss (t|| = 1000) mod. diffusion (D= 1) strong || loss (t|| = 1) mod. diffusion (D= 1) 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Strong diffusion (A=1, v=1, D=10) no || loss (t|| = 1000) strong diffusion (D= 10) strong || loss (t|| = 1) strong diffusion (D= 10) 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Characteristic times in the SOL 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Kinetic estimates of || losses 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Kinetic estimates of || losses 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Plasmoid (blob) model of ELM propagation: I (Krasheninnikov,2001) 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Plasmoid (blob) model of ELM propagation: II 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Radial propagation of Type-I ELMs on JET, W.Fundamenski Core SOLdiv SOLlim D Im(t) tELM tm= ta + Dta-m v In(t) Dta-m t|| tn= ta + Dta-n Dta-n Da(t) ta = tELM + t|| 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Slow (10 kHz) vs. Fast (250 kHz) signals Daslow Dafast I22fast I22slow 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Fast ELM signals: B-coils, soft X-ray, Da Dafast Daslow 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Typical discharge: 12 MW, 2.5 MA/2.4 T 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Typical ELM seen by LM probes Davertical Inmeasured Inohmic Vsupply 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

detail: definition of times & delays DtaFWHM tarise tapeak tnrise tnpeak DtnFWHM 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

I  D0.780.03 r1/2 exp{(8.50.5)r}, r-rlim < 0.3 m Amplitude analysis: I  D0.780.03 r1/2 exp{(8.50.5)r}, r-rlim < 0.3 m I  D0.920.04 r1/2 exp{(22.81.0)r}, r-rlim < 0.1 m 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Radial propagation of Type-I ELMs on JET, W.Fundamenski 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

ELM Temperature estimate Fitting for peak ELM values, yields Te ~ 25 eV Same for all LM probes The ELM electrons are cold at the plates !!! (at least for high clearance JET discharges with r - rsep > 10 cm) What about the ions ? They are probably hot ! 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Temporal analysis: rise time delays rise < || rise ~ L|| / cs ~ 0.1 - 0.2 msec 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Temporal analysis: peak time delays from the slope, v ~ 950  200 m/s 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Temporal analysis: FWHM widths  ~ 0.18 ms ~ 0.16 m, D ~ 500  100 m2/s 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

SOL density drop vs. lim/sol discontinuity 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

SOL velocity variation vs. lim/sol discontinuity 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

ELM energy flux to the limiters: I 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

ELM radial velocities: summary 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Plasmoid model vs. measured velocities 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Predicted plasmoid size 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Radial propagation of Type-I ELMs on JET, W.Fundamenski Extrapolation to ITER gives v0 ~ 1.0 km/s, 0 ~ 11 cm <v/cs> / (v/cs)ped ~ 0.8 - 1 Hence, need rlim > 14-18 cm for < few % energy to wall 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Inner limiter probes: MkIIA ~ 38000 Type-I ELMs with up to 15 MW; 3 inner probes Have not yet analysed data, but initial examination indicates that... 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski

Inner probe amplitudes smaller & broader: Outer Inner 16/11/2018 Radial propagation of Type-I ELMs on JET, W.Fundamenski