ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems: Chapter 6 November 1, 2011 © Dan Negrut, 2011 ME451, UW-Madison TexPoint fonts.

Slides:



Advertisements
Similar presentations
Finite Element Method CHAPTER 4: FEM FOR TRUSSES
Advertisements

1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
Business Transaction Management Software for Application Coordination 1 Business Processes and Coordination.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
Addition Facts
ZMQS ZMQS
ME751 Advanced Computational Multibody Dynamics Section 9.3 February 18, 2010 © Dan Negrut, 2010 ME751, UW-Madison Discontent is the first necessity of.
ABC Technology Project
© 2012 National Heart Foundation of Australia. Slide 2.
Chapter 5 Test Review Sections 5-1 through 5-4.
Addition 1’s to 20.
25 seconds left…...
Week 1.
We will resume in: 25 Minutes.
1 Unit 1 Kinematics Chapter 1 Day
How Cells Obtain Energy from Food
Lecture 6: Constraints II
ME751 Advanced Computational Multibody Dynamics Inverse Dynamics Equilibrium Analysis Various Odd Ends March 18, 2010 © Dan Negrut, 2010 ME751, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Relative Kinematic Constraints, Composite Joints – 3.3 October 4, 2011 © Dan Negrut, 2011 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Initial Conditions for Dynamic Analysis Constraint Reaction Forces October 23, 2013 Radu Serban University.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Review of Elements of Calculus – 2.5 Vel. and Acc. of a Point fixed in a Ref Frame – 2.6 Absolute vs.
ME451 Kinematics and Dynamics of Machine Systems Review of Matrix Algebra – 2.2 Review of Elements of Calculus – 2.5 Vel. and Acc. of a point fixed in.
ME451 Kinematics and Dynamics of Machine Systems Review of Matrix Algebra – 2.2 September 13, 2011 Dan Negrut University of Wisconsin-Madison © Dan Negrut,
ME751 Advanced Computational Multibody Dynamics Review Calculus Starting Chapter 9 of Haug book January 26, 2010 © Dan Negrut, 2010 ME751, UW-Madison "Motivation.
ME 440 Intermediate Vibrations Tu, Feb. 17, 2009 Section 2.5 © Dan Negrut, 2009 ME440, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Review of Linear Algebra 2.1 through 2.4 Th, Sept. 08 © Dan Negrut, 2011 ME451, UW-Madison TexPoint fonts.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Singular Configurations of Mechanisms 3.7 October 26, 2010 © Dan Negrut, 2010 ME451, UW-Madison TexPoint.
A PPLIED M ECHANICS Lecture 02 Slovak University of Technology Faculty of Material Science and Technology in Trnava.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 11, , 6.1.4, 6.2, starting 6.3 © Dan Negrut, 2010 ME451,
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 1, 2011 Solving Index 3 DAEs using Newmark Method © Dan Negrut, 2011.
ME451 Kinematics and Dynamics of Machine Systems Review of Linear Algebra 2.1 through 2.4 Tu, Sept. 07 © Dan Negrut, 2009 ME451, UW-Madison TexPoint fonts.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Review of Linear Algebra 2.1, 2.2, 2.3 September 06, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Vel. And Acc. of a Fixed Point in Moving Frame Basic Concepts in Planar Kinematics February.
ME451 Kinematics and Dynamics of Machine Systems Generalized Forces 6.2 October 16, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Introduction to Dynamics 6.1 October 09, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Singular Configurations 3.7 October 07, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems March 31, , starting 6.3 © Dan Negrut, 2009 ME451, UW-Madison Quote.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 10, , starting 6.3 © Dan Negrut, 2011 ME451, UW-Madison TexPoint.
1 Dynamics Differential equation relating input torques and forces to the positions (angles) and their derivatives. Like force = mass times acceleration.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems May 07, 2009 EOM in non-Cartesian Reference Frames ~ not in textbook~ Quote.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 08, , 6.1.4, 6.2, starting 6.3 © Dan Negrut, 2011 ME451,
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 16, , starting 6.3 © Dan Negrut, 2010 ME451, UW-Madison TexPoint.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 6, 2011 Equilibrium Analysis & Inverse Dynamics Analysis ME451 Wrap.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Relative Kinematic Constraints, Composite Joints – 3.3 October 6, 2011 © Dan Negrut, 2011 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 9, 2010 Solving Index 3 DAEs using Newmark Method © Dan Negrut, 2010.
ME451 Kinematics and Dynamics of Machine Systems Start Position, Velocity, and Acc. Analysis 3.6 October 21, 2010 © Dan Negrut, 2010 ME451, UW-Madison.
ME 440 Intermediate Vibrations Tu, Feb. 3, 2009 Sections , © Dan Negrut, 2009 ME440, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Composite Joints – 3.3 Gears and Cam Followers – 3.4 October 5, 2010 © Dan Negrut, 2010 ME451, UW-Madison.
Introduction to Dynamics. Dynamics is that branch of mechanics which deals with the motion of bodies under the action of forces. Dynamics has two distinct.
ME451 Kinematics and Dynamics of Machine Systems Newton-Euler EOM 6.1.2, October 14, 2013 Radu Serban University of Wisconsin-Madison.
ME 440 Intermediate Vibrations Th, April 2, 2009 Chapter 5: Vibration of 2DOF Systems © Dan Negrut, 2009 ME440, UW-Madison Quote of the Day: It is a miracle.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems March 26, , © Dan Negrut, 2009 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Review of Elements of Calculus – 2.5 Vel and Acc of a Point fixed in a Ref Frame – 2.6 Jan. 29, 2009 ©
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 4, 2010 Chapter 6 © Dan Negrut, 2010 ME451, UW-Madison TexPoint fonts.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 9, 2010 Solving Index 3 DAEs using Newmark Method © Dan Negrut, 2010.
ME751 Advanced Computational Multibody Dynamics
DYNAMICS OF MACHINES To know the purpose for which the m/c is needed.
ME751 Advanced Computational Multibody Dynamics
KINEMATIC CHAINS & ROBOTS (I)
Statics Dr. Aeid A. Abdulrazeg Course Code: CIVL211
ME321 Kinematics and Dynamics of Machines
Presentation transcript:

ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems: Chapter 6 November 1, 2011 © Dan Negrut, 2011 ME451, UW-Madison TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A Computer science education cannot make anybody an expert programmer any more than studying brushes and pigment can make somebody an expert painter. Eric Raymond

Before we get started… Last Time Discuss Singular Configurations of Mechanisms (Section 3.7) Start the Dynamics Analysis part of the course (Chapter 6) Today: Virtual displacements Look at all types of forces we might deal with in ME451 and determine the virtual work they lead to Start derivation of EOM of one body (pp. 200 of textbook) HW (due on November 3 at 11:59 PM): ADAMS MATLAB Quick Remarks: Exam coming up on Nov. 3 during regular class hour Exam Review on Nov. 2, starting at 6PM in room 1153ME Note that the review room is the one next door 2

Two Principles Principle of Virtual Work Applies to a collection of particles States that a configuration is an equilibrium configuration if and only if the virtual work of the forces acting on the collection of particle is zero DAlemberts Principle For a collection of particles experiencing accelerated motion you can still fall back on the Principle of Virtual Work when you also include in the set of forces acting on each particle its inertia force NOTE: we are talking here about a collection of particles Consequently, well have to regard each rigid body as a collection of particles that are rigidly connected to each other and that together make up the body 3

Virtual Work and Virtual Displacement 4

5 [Small Detour, 2 slides]

[Example] Calculus of Variations 7 The dimensions of the vectors and matrix above such that all the operations listed can be carried out. Indicate the change in the quantities below that are a consequence of applying a virtual displacement q to the generalized coordinates q

Calculus of Variations in ME451 In our case we are interested in variations of kinematic quantities (locations of a point P, of A matrix, etc.) due to a variations in the location and orientation of a body. Variation in location of the L-RF: Variation in orientation of the L-RF: As far as the change of orientation matrix A( Á ) is concerned, using the result stated two slides ago, we have that a variation in the orientation leads to the following variation in A: 8

Calculus of Variations in ME451 Virtual Displacement of a Point P Attached to a Body 9 Location, Original Location, after Virtual Displacement

Deriving the EOM 10

Some Clarifications Assumptions: All bodies that we work with are rigid * The bodies undergo planar motion We will use a full set of Cartesian coordinates to position and orient a body in the 2D space Start from scratch, that is, from the dynamics of a material point First, well work our way up to determining the EOM for one body Then, well learn how to deal with a collection of bodies that are interacting through kinematic joints and/or friction & contact 11

Some Clarifications [regarding the Rigid Body concept] 12

Road Map [2 weeks] Introduce the forces present in a mechanical system Distributed Concentrated Express the virtual work produced by each of these forces Apply principle of virtual work and obtain the EOM Eliminate the reaction forces from the expression of the virtual work Obtain the constrained EOM (Newton-Euler form) Express the reaction (constraint) forces from the Lagrange multipliers 13

Types of Forces & Torques Acting on a Body Type 1: Distributed over the volume of a body Examples: Inertia forces Internal interaction forces Etc. Type 2: Concentrated at a point Examples: Action (or applied, or external) forces and torques Reaction (or constraint) forces and torques Etc. 14

Virtual Work: Dealing with Inertia Forces 15

Virtual Work: Dealing with Mass-Distributed Forces 16

Virtual Work: Dealing with Internal Interaction Forces 17

Dealing with Active Forces 18

Dealing with Active Torques 19

Virtual Work: Dealing with Constraint Reaction Forces 20

Virtual Work: Dealing with Constraint Reaction Torques 21

Deriving Newtons Equations for a body with planar motion NOTE: You should be able to derive Newtons equations for a planar rigid body on your own (closed books) Overall, the book does a very good job in explaining the derivation the equations of motion (EOM) for a rigid body The material is straight out of the book (page 200) 22

EOM: First Pass For now, assume that there are no concentrated forces Do this for *one* body for now We are going to deal with the distributed forces and use them in the context of dAlemberts Principle Inertia forces Internal forces Other distributed forces (gravity) 23

25