The Raster Data Model 5 2 Llano River, Mason Co., TX 9/13/2016

Slides:



Advertisements
Similar presentations
GG3019/GG4027/GG5019 An Introduction to
Advertisements

WFM 6202: Remote Sensing and GIS in Water Management © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 6202: Remote Sensing and GIS in Water Management Akm.
CS 128/ES Lecture 5a1 Working with Rasters.
Data Models (Raster) Reading Assignment: Bolstad, Chapter 2.
Raster Based GIS Analysis
Bit Depth and Spatial Resolution SIMG-201 Survey of Imaging Science © 2002 CIS/RIT.
Cartographic and GIS Data Structures
Raster Data in ArcSDE 8.2 Why Put Images in a Database? What are Basic Raster Concepts? How Raster data stored in Database?
CS 128/ES Lecture 5a1 Raster Formats (II). CS 128/ES Lecture 5a2 Spatial modeling in raster format  Basic entity is the cell  Region represented.
CS 128/ES Lecture 5a1 Working with Rasters.
CS 128/ES Lecture 5a1 Raster Formats (II). CS 128/ES Lecture 5a2 Spatial modeling in raster format  Basic entity is the cell  Region represented.
Graphics in the web Digital Media: Communication and Design
Introduction to Digital Data and Imagery
Spatial data models (types)
1 Bitmap Graphics It is represented by a dot pattern in which each dot is called a pixel. Each pixel can be in any one of the colors available and the.
COMP Bitmapped and Vector Graphics Pages Using Qwizdom.
GIS is composed of layers Layers –land/water –roads –urban areas –pollution levels Data can be represented by VECTORS, or Data can be represented by RASTERS.
CGMB214: Introduction to Computer Graphics
GIS Applications in Civil Engineering
Lab #5-6 Follow-Up: More Python; Images Images ● A signal (e.g. sound, temperature infrared sensor reading) is a single (one- dimensional) quantity that.
Raster Data Chapter 7. Introduction  Vector – discrete  Raster – continuous  Continuous –precipitation –elevation –soil erosion  Regular grid cell.
Introduction to Rasters In ArcGIS 9.2. What can you do with Rasters Lots….
Coordinate Systems Global Coordinate System – Latitude, Longitude and elevation UTM – eastings and northings, reference points are the equator and the.
1 Perception, Illusion and VR HNRS 299, Spring 2008 Lecture 14 Introduction to Computer Graphics.
Applied Cartography and Introduction to GIS GEOG 2017 EL Lecture-2 Chapters 3 and 4.
GIS Data Structure: an Introduction
Chapter 3 Digital Representation of Geographic Data.
How do we represent the world in a GIS database?
The world of RASTER data Modeling... Elevation....etc. The Spatial Analyst Extension.
Raster Data Model.
Cartographic and GIS Data Structures Dr. Ahmad BinTouq URL:
Image Representation. Objectives  Bitmaps: resolution, colour depth and simple bitmap file calculations.  Vector graphics: drawing list – objects and.
Digital Cameras And Digital Information. How a Camera works Light passes through the lens Shutter opens for an instant Film is exposed to light Film is.
CHAPTER 4 RASTER DATA MODEL 4.1 Elements of the Raster Data Model
Raster Concepts.
Raster data models Rasters can be different types of tesselations SquaresTrianglesHexagons Regular tesselations.
GIS Data Structures How do we represent the world in a GIS database?
Lecture 7: Intro to Computer Graphics. Remember…… DIGITAL - Digital means discrete. DIGITAL - Digital means discrete. Digital representation is comprised.
Image File Formats By Dr. Rajeev Srivastava 1. Image File Formats Header and Image data. A typical image file format contains two fields namely Dr. Rajeev.
Data Models, Pixels, and Satellite Bands. Understand the differences between raster and vector data. What are digital numbers (DNs) and what do they.
What is GIS? “A powerful set of tools for collecting, storing, retrieving, transforming and displaying spatial data”
Raster Data Model. How to Represent Point Features in Raster Data Models.
Spatial Data Models Geography is concerned with many aspects of our environment. From a GIS perspective, we can identify two aspects which are of particular.
Graphics and Image Data Representations 1. Q1 How images are represented in a computer system? 2.
Lecture 2: GIS Fundamentals  Data layers  Feature classes  GIS data properties  Data types –vector and raster  Scale  Accuracy and precision.
Images and Graphics.
8th Lecture – Intro to Bitmap or Raster Images
Unit 2.6 Data Representation Lesson 3 ‒ Images
BITMAPPED IMAGES & VECTOR DRAWN GRAPHICS
Initial Display Alternatives and Scientific Visualization
Chapter 8 Raster Analysis.
Graphics and image data representation
Data Representation.
Binary Notation and Intro to Computer Graphics
Binary Representation in Audio and Images
Computer Science Higher
Spatial Models – Raster Stacy Bogan
Vector vs. Bitmap.
Digital Data Format and Storage
Chapter III, Desktop Imaging Systems and Issues: Lesson IV Working With Images
Spatial Analysis: Raster
Spatial Data Models Raster uses individual cells in a matrix, or grid, format to represent real world entities Vector uses coordinates to store the shape.
Representing Images 2.6 – Data Representation.
Cartographic and GIS Data Structures
Ch2: Data Representation
Raster Data Analysis.
Spatial Analysis: Raster
Multimedia System Image
Visuals are analog signals...
Presentation transcript:

The Raster Data Model 5 2 5 5 5 5 5 5 5 5 5 5 2 2 5 5 5 5 5 2 2 8 8 2 2 2 2 2 8 8 2 5 5 5 5 5 5 2 2 2 5 5 5 5 2 2 2 5 5 5 5 Llano River, Mason Co., TX 9/13/2016 GEO327G/386G, UT Austin 1

Rasters are:  Regular square tessellations Matrices of values distributed among equal- sized, square cells 565 575 579 580 573 582 590 580 595 600 581 597 601 600 620 632 9/13/2016 GEO327G/386G, UT Austin 2

Why squares?  Computer scanners and output devices use square pixels Bit-mapping technology/theory can be adapted from computer sciences  1-to-1 mapping to grid coordinate systems! 9/13/2016 GEO327G/386G, UT Austin 3

Cell location specified by: • Row/column (R/C) address Origin is upper left cell (1,1) Relative or geographic coordinates can be specified 1 2 3 4 510520 6005300 1 1,1 2 3 4 UTM coordinates 4,3 6005180 510400 9/13/2016 GEO327G/386G, UT Austin 4

Registration to “world” coordinates 510400 6005300 0 0 Unregistered Registered 9/13/2016 GEO327G/386G, UT Austin 5

Registration to “world” coordinates 510400 6005300 X columns 30 m y Image Space x Map Space  Requires “world file”: • Specify coords. of upper left corner Specify ground dimensions of cell, in same units • 9/13/2016 GEO327G/386G, UT Austin 6

World File – DRG example  2.43840000000000 0.00000000000000 -2.43840000000000 487988.64154709835000 3401923.72301301550000 /* UTM Zone 14 N with NAD83 /* This world file shifts the upper left image coordinate to the corresponding /* NAD83 location, resulting in an approximated NAD83 image. /* Map Name: Art CELL SIZE IN X DIRECTION (m) ROTATION TERM CELL SIZE IN Y DIRECTION (m) UTM EASTING OF UPPER LEFT CORNER (m) UTM NORTHING OF UPPER LEFT CORNER (m) /* Map Date: 1982 /* Map Scale: 24000 9/13/2016 GEO327G/386G, UT Austin 7

Spatial Resolution Low Res. Hi Res. 40 m 40 m 100 10 m 25 m 5 m  Defined by area or dimension of each cell o Spatial Resolution = (cell height) X (cell width) o High resolution: cell represent small area o Low resolution: cell represent larger area Defined by size of one edge of cell (e.g. “30 m DEM”) For fixed area, file size increases with resolution  Low Res. Hi Res. 40 m 40 m 100 10 m 2 25 m 2 5 m 9/13/2016 GEO327G/386G, UT Austin 8

30 m vs. ~90 m pixel size o Resolution of m data is 9 Packsaddle Mountain o Resolution of m data is 9 times better than m data 30 90 30 m 90 m (50 m contours, vector data layer) 9/13/2016 GEO327G/386G, UT Austin 9

Resolution constraint  Cell size should be less than half of the size of the smallest object to be represented (“Minimum mapping unit; MMU”) Cell size = MMU Cell size ~ ½ MMU 9/13/2016 GEO327G/386G, UT Austin 10

e.g. DOQQ resolutions  Resolution is size of sampled area on ground, not MMU “1 m” “1/3 m” “1 m resolution ” raster data “1/3 m resolution ” raster data (E. Mall Circle Drive) 1 m2 1/3 m MMU= 2 m MMU= ~ 2/3 m 9/13/2016 GEO327G/386G, UT Austin 11

Raster Dimension:  Number of rows x columns o E.g. Monitor with 1900 x1200 pixels 565 575 579 580 573 582 590 Dimension = 4 x 4 580 595 600 581 597 601 600 620 632 9/13/2016 GEO327G/386G, UT Austin 12

Raster Attributes  Two types:    1. Integer codes assigned to raster cells  E.g. rock type, land use, vegetation Codes are technically nominal or ordinal data 2. Measured “real” values  Can be integer or “floating-point” (decimal) values; technically interval or ratio data  E.g. topography, em spectrum, temperature, rainfall, concentration of a chemical element 9/13/2016 GEO327G/386G, UT Austin 13

Integer Code Attributes . Code is referenced to attribute via a “look-up table” or “value attribute table” – VAT . Commonly many cells with the same code Different attributes must be stored in different raster layers 5 2 5 5 5 5 5 5 5 5 5 5 2 2 5 5 5 5 5 2 2 8 8 5 5 5 2 2 8 8 2 2 2 2 2 8 8 2 5 5 5 5 5 5 2 2 2 5 5 5 5 2 2 2 5 5 5 5 VAT Value Count 21 Rock Type Marble Gneiss 2 5 8 37 6 Granite Nominal Coded Raster 9/13/2016 GEO327G/386G, UT Austin 14

Mixed Pixel Problem  Severity is resolution dependant  Rules to assign mixed pixels include: • “edge pixels”: not assigned to any feature– define a new class • Assign to feature that comprises most of pixel 9/13/2016 GEO327G/386G, UT Austin 15

Coded Value Raster Types  Single-band: Thematic data o Black & White: binary (1 bit) (0 = black, 1 = white) o Panchromatic (“Grayscale”) (8 bit): 0 (black) – 255 (white) or graduated color ramps (e.g. blue to red, light to dark red) o Colormaps (“Indexed Color”) (8 bit): code cells by values that match prescribed R-G-B combinations in a lookup table B & W Panchromatic Color Map Lookup/index table Figures from: Modeling our World, ESRI press 9/13/2016 GEO327G/386G, UT Austin 16

Examples – Black & White (Grayscale) Single Band Examples – Black & White (Grayscale) Black & White - 1 bit 54 Grayscale – 8 bit; black, white & 254 shades of gray 9/13/2016 GEO327G/386G, UT Austin 17

Example Color Map (Indexed Color) Single Band Example Color Map (Indexed Color) E.g. Austin East 7.5’ Digital Raster Graph (10 of 12 values shown)  corresponding to a prescribed color (Red, Green & Blue combination) Each pixel contains one of 12 unique values, each 9/13/2016 GEO327G/386G, UT Austin 18

Measured, “Real Value” Attributes  different layers, e.g. spectral bands in satellite imagery Commonly stored as floating point values Different attributes must be stored in  Compression techniques for rasters of integer-valued cells, but not floating point (see below) 9/13/2016 GEO327G/386G, UT Austin 19

Image Raster Attributes Multiband Image Raster Attributes  Multi-band Spectral Data Band 3 Band 2 Band 1 Red RGB Composite Visible Spectrum  Band = segment of Em Green Blue spectrum Map intensities of each band as red, green or blue. 255  Display alone or as Attribute values 0 - 255 composite Figures from: Modeling our World, ESRI press 9/13/2016 GEO327G/386G, UT Austin 20

Multiband Image bits/Band, 3 Band RGB 8 E.g. Austin East 7.5’ Color Infrared Digital Orthophotograph (“CIR DOQ”) Band 1 Band 2 Band 3 9/13/2016 GEO327G/386G, UT Austin 21

Cell values apply to:  Middle of cell, e.g. Digital Elevation Models (DEM)  Whole cell, e.g. most other data Source: Modeling our World, ESRI press 9/13/2016 GEO327G/386G, UT Austin 22

Digital Elevation Model Southern Tetons, Wyoming 9/13/2016 GEO327G/386G, UT Austin 23

Airborn Magnetic (TFI) Map TFI Pixel values Southern Tetons, Wyoming 9/13/2016 GEO327G/386G, UT Austin 24

How are rasters projected?  Problem: Square cells must remain square after projection.  Solution: Resampling (interpolation); add, remove, reassign cells to conform to new spatial reference. 9/13/2016 GEO327G/386G, UT Austin 25

Raster File Size  fixed by dimension, not information 8 x 8 8 x 8 At 1 bit/cell, file size = 8 x 8 x 1 = 64 bits (8 bytes) 9/13/2016 GEO327G/386G, UT Austin 26

Raster File Size File Size = Rows x columns x bit-depth  Bit depth: number of bits used to represent pixel value  “8-bit” data can represent 256 values (2 ) 8 “16-bit” data (2 “32-bit” data allows ~4.3 billion values  16 ) allows 65,536 values  9/13/2016 GEO327G/386G, UT Austin 27

File Structure Data File (linear array) 8 x 8 raster 8, 8, 8 Header: (dimension, max. cell value) + resolution, coordinate of one corner pixel, etc. 8, 8, 8 5 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 5 5 5 2 2 5 5 5 5 5 2 2 8 8 2 2 2 2 2 8 8 2 5 5 5 5 5 5 2 2 2 5 5 5 5 2 2 2 5 5 5 5 5 2 5 5 5 2 2 5 5 5 5 5 2 2 8 8 5 5 5 2 2 8 8 2 2 2 2 2 8 8 2 5 2 5 5 5 5 5 5 2 2 2 5 5 5 5 2 2 2 5 5 5 5 Data File (linear array) 8 x 8 raster 9/13/2016 GEO327G/386G, UT Austin 28

File Compression  E.g. Run-length encoding Row, Run Freq., Value 1,1 5 2 5 5 5 5 5 5 5 5 5 5 2 2 5 5 5 5 5 2 2 8 8 2 2 2 2 2 8 8 2 5 5 5 5 5 5 2 2 2 5 5 5 5 2 2 2 5 5 5 5 1,1 2,3 3,3 4,3 5,2 6,2 8,5 4,5 2,2 2,5 4,5 2,2 2,8 6,2 2,8 2,2 6,5 4,2 4,5 1,5 3,2 4,5 7,2 8,3 Before: 64 characters After: 46 characters reduction; ratio of 1.4: 1) (28% 9/13/2016 GEO327G/386G, UT Austin 29

File Compression  E.g. Block encoding Block Size Value Coordinates 1 2 3 4 5 6 7 8 1 5 5 5 5 5 2 2 5 5 5 5 5 5 5 5 5 1 5 1 8 5,1 6,1 3,6 4,6 8,6 8,7 1,8 8,8 2 3 4 5 6 7 8 7,5 6,5 5 2 5 5 5 2 2 8 8 2 2 2 2 2 8 8 2 5 5 5 5 5 5 2 2 2 5 5 5 5 2 2 2 5 5 5 5 1 2 3,5 4,5 1,7 2,7 2,8 4 5 7,1 4 2 5,2 5,4 1,5 3,7 7,3 5,6 4 8 9 5 16 5 1,1 After: 61 characters reduction ratio of 1.05: 1) Before: 64 characters (5% 9/13/2016 GEO327G/386G, UT Austin 30

MrSID or ECW (wavelet) compression  - Multi-resolution Seamless Image Database – commercialized by LizardTech Compression ratios of 15-20:1 for single band 8-bit images  Ratios of 2-100:1 (!) for multiband color images also ECW by ER Mapper Ltd. (now Intergraph/ERDAS) *** Enormous raster data sets now manageable on PCs and across web with this technology *** 9/13/2016 GEO327G/386G, UT Austin 31

“Lossy” vs. Lossless Compression  Techniques that combine similar attribute information to reduce file size are “lossy” e.g. JPEG, GIFF, PNG, MrSID  Lossless formats; TIFF, BMP, GRID 9/13/2016 GEO327G/386G, UT Austin 32

Raster Pyramids  Store reduced-resolution copies of a raster for rapid display – e.g ArcGIS, Google, many others Often combined with image tiling and compression for rapid rendering of images pixel Source: ESRI ArcGIS Help file 9/13/2016 GEO327G/386G, UT Austin 33

Image “Tiling”  Split raster into small contiguous rectangles or squares = tiles  Display only the tile required upon zooming Level 0 = 100% of image = 16 low res. tiles Level 1 = higher res. (parts of 4 med. res. tiles) Level 2 = highest res. (1+ high res. tiles) Level 0 Level 1 Level 2 9/13/2016 GEO327G/386G, UT Austin 34

Supported Raster Formats  See ArcCatalog>Tools> Options  Each explained in Help o 24 supported formats 9/13/2016 GEO327G/386G, UT Austin 35

Vector or Raster?  Spatially continuous data = raster Modeling of data with high degree of variability = raster  Objects with well defined boundaries = vector Geographic precision & accuracy = vector Topological dependencies = vector or raster 9/13/2016 GEO327G/386G, UT Austin 36

Raster or Vector? Vector  Raster  . . Compact data structure Efficient topology Sharper graphics Object-orientation better for some modeling Simple data structure Ease of analytical operation Format for scanned or sensed data . . – easy, cheap data entry But……. But…. . . Less compact Querry-based analysis difficult Coarser graphics More difficult to transform & project More complex data structure Overlay operations computationally intensive Not good for data with high degree of spatial variability Slow data entry . 9/13/2016 GEO327G/386G, UT Austin 38