Energy & Work. Work involves a change in a system. changing an objects position heating or cooling a building, generating a image on the TV screen, moving.

Slides:



Advertisements
Similar presentations
Work Work: Work is said to be done when the point of application of a force moves and it is measured using the product of force and the distance moved.
Advertisements

Conservation of Energy
Chapter 5 Work, Energy and Power
Work, distance and force
Work, Power, & Energy Homework: Read pages 257 – 260
KS4 Kinetic and Potential energy
Chapter 4: Energy.
Unit 4: Alternative Energy Topic 1:Energy Power & Energy 3201.
Work and Energy By Mr Leavings Chapter 5. What is Work In science Work has a specific meaning. If you push a box with a force of one newton for a distance.
Energy Problems Review for Potential energy, Kinetic energy, Total Energy work, power.
Energy Unit Adapted from Motion, Forces, and Energy textbook Copyright 1997 Prentice-Hall Inc.
Chapter 7 Energy, Part 1 Work Power Mechanical Energy Potential Energy
WORK, ENERGY, POWER. Types (and changes) of Energy.
Energy: Forms and Changes
Energy: Forms and Changes
Energy: Forms and Changes. Nature of Energy EEnergy is all around you! You can hear energy as sound. You can see energy as light. And you can feel it.
Chapter 15 Energy. Windup Toy xwCUzYuiTdkhttp:// xwCUzYuiTdk.
Energy: Forms and Changes Nature of Energy  Energy is involved when: a bird flies. a bomb explodes. rain falls from the sky. electricity flows in a.
WORK.
Energy Kinetic and potential Forms of Energy Mechanical - energy with which moving objects perform work Ex: bicycle, sound Mechanical - energy with which.
ENERGY.
Chapter 4 Section 1 Energy
Energy: Forms and Changes. EEnergy is all around you! YYou can hear energy as sound. YYou can see energy as light. AAnd you can feel it as wind.
Chapter Seven: Energy  7.1 Energy and Systems  7.2 Conservation of Energy  7.3 Energy Transformations.
Unit 3 Section 3 Notes Conservation of Energy. Energy Transformations Energy is most noticeable as it transforms from one type to another. What are some.
P. Sci. Unit 4 Chapter 15 Energy. Energy and Work Whenever work is done, energy is transformed or transferred to another system. Energy is the ability.
What happens to the gravitation force on an object as it gets closer to another object? Agenda for Monday Nov 10 th 1.Quiz 2.Energy Notes.
Energy.
Energy: What is it? Forms and States Catherine Walker American Public University.
What do you think of when
CHAPTER 10 WORK, ENERGY, AND POWER. STANDARDS SP3. Students will evaluate the forms and transformations of energy. a. Analyze, evaluate, and apply the.
Energy Chapter 7.
Motion and Forces Work and Energy Chapter 4. Bell Work 2/18/10 Write each statement, then decide if the statement is true or false, if false correct it.
Work, Power and Energy. WORK Is the product of force and distance Work is done when a force acts on an object in the direction the object moves. No movement,
Chapter 15 Energy 15.1 Energy and Its Forms. How are energy and work related? Energy is the ability to do work. Energy and Work Work is a transfer of.
Applied Physics Chap 4 Energy1 Chapter 8: Energy The universe is composed of two substances called matter and energy which are interrelated on some fundamental.
Work, Power and Energy.
WORK A force that causes a displacement of an object does work on the object. W = F d Work is done –if the object the work is done on moves due to the.
Energy and Its Conservation. Energy Energy is defined as the ability of a body or system of bodies to perform work. Energy can be subdivided into other.
CH.12 Section #1 What is Energy? What is Energy?.
P. Sci. Unit 4 Chapter 15 Energy. Energy and Work Whenever work is done, energy is transformed or transferred to another system. Energy is the ability.
Chapter Seven: Energy  7.1 Energy and Systems  7.2 Conservation of Energy  7.3 Energy Transformations.
Work, Power & Energy How do they relate? (Stone, Ebener, Watkins)
5.1 Work Term ‘work’ has special meaning in science – work is done ONLY if a force moves an object. The distance an object moves ALSO must be in the same.
PHYSICS – Energy. LEARNING OBJECTIVES Energy Core Identify changes in kinetic, gravitational potential, chemical, elastic (strain), nuclear and.
Energy: Forms and Changes. Nature of Energy EEnergy is all around you! You can hear energy as sound. You can see energy as light. And you can feel it.
Class WORK 4/28/16 Throughout the PowerPoint ( review of Energy there were 7 questions Follow the PowerPoint lecture to answer the questions. The 7 questions.
Energy: Forms and Changes. Nature of Energy EEnergy is all around you! You can hear energy as sound. You can see energy as light. And you can feel it.
Work and Energy 1.What is work? 2.What is energy? 3.What does horsepower and torque of an engine tell you about a car?
Energy Notes Energy is one of the most important concepts in science. An object has energy if it can produce a change in itself or in its surroundings.
Physics Chapter 11 Energy & Energy Conservation. Objectives 11.1 Energy and Its Forms Define Potential and Kinetic Energy Calculate Kinetic Energy of.
ENERGY P.E. and K.E. Nature of Energy Energy is all around you! You can hear energy as sound. You can see energy as light. And you can feel it as wind.
1. 2 Work: done ONLY when a force is applied to an object, and the object moves IN THE SAME DIRECTION OF THE APPLIED FORCE Work is calculated by multiplying.
Physical Science Chapter 5 Energy & Power Bill Nye Energy Video
Unit 5: Work, Power and Energy. Work Work is done when a force causes a change in motion of an object, or work is a force that is applied to an object.
ENERGY. Potential energy is energy due to position. Systems or objects with potential energy are able to exert forces (exchange energy) as they change.
Work Part I: Energy notes. Definitions Everyday/Common Work is done in order to accomplish some task or job To get the work done energy is expended Scientifically,
Chapter 13 Work & Energy.
P. Sci. Unit 4 Chapter 15 Energy.
Energy and Work.
Energy.
Chapter Seven: Energy 7.1 Energy and Systems
Unit 10 Work, Power, & Energy.
Today we will…. Define work and power
Goals Relate transformations and flow of energy within a system-chemical, mechanical, electromagnetic, light, sound, thermal, electrical, and nuclear.
Energy The ability to do work.
Physical Science Chapter 3
Chapter 4 Work and Energy
Part 6: Work, Energy, and Power
Presentation transcript:

Energy & Work

Work involves a change in a system. changing an objects position heating or cooling a building, generating a image on the TV screen, moving a speaker cone to make sound Since different tasks require different amounts of work, some things require more energy than others.

Work is… F = force in Newtons d = displacement in meters The angle between F & d Joule is the unit of WORK

Work is… Work- A quantity that measures the effects of a force acting over a distance. Work is a result of motion in the direction of the force. There is no work without motion (d=0). Distance-means distance in the direction of the force. If a force is vertical and motion is horizontal, No work is done.

Work is… MAXIMUM when = 0º MAXIMUM when Force // Displacement MINIMUM when = 90º MINIMUM when Force Displacement

Question #2 If you push vigorously against a brick wall, how much work do you do on the wall? a)A lot b)None c)Without numbers, how can we know? d)No idea

Answer #2: (b) None There is no work done on the wall as there is no displacement of the wall.

What are the units of WORK? Work is measured in Newton-meters (Nm) or foot-pounds (ftlb) A Newton-meter is called a JOULE (sounds like jewel) – Named after James Prescott Joule ( ) – British physicist who established the mechanical equivalence of heat and discovered the first law of thermodynamics.

Find the work done by gravity when a 2.0 kg rock falls 1.5 m. w = F (d) cos( ) What is the formula for Force (F) F = m (g) or F = m (9.8 m/s 2 ) w = (m · g) (d) cos( ) w = (2.0kg · 9.8m/s 2 )(1.5m) cos(0°) w = 29 J

Negative Work... = 0° Cos(0°) = 1 = 180° Cos(180°) = -1

How much work is done when a man pushes a car with an 800 N constant force over a distance of 20 m? Question #3 a)0 J b)40 J c)800 J d)16000 J e)Im lost…

How much work is done when a man pushes a car with an 800 N constant force over a distance of 20 m? Answer #3: (d) J w = F (d) cos( ) w = (800 N)(20 m) cos(0°) w = J

How much work is done by a woman pulling a loaded dolly 100 ft with a force of 150 lb at an angle of 45°? Question #4 a)0 ft-lb b) ft-lb c) ft-lb d)15000 ft-lb e)Im lost…

How much work is done by a woman pulling a loaded dolly 100 ft with a force of 150 lb at an angle of 45°? Answer #4: (c) ft-lb w = F (d) cos( ) w = (150 lb)(100 ft) cos(45°) w = ft-lb

Power & Work Work can be done at different rates. Since work involves the transfer of energy, the faster work is done, the quicker energy needs to be transferred. Power i s the measure of how fast work can be done. In other words, power is the rate at which energy is transferred.

Power is… W = work in Joules t = time in seconds WATT is the unit of power

Question #5 A woman exerts 100 N of force pushing a grocery cart 5 meters in 2.5 seconds. How much power did she exert? a)0 watt b)40 watt c)200 watt d)1250 watt e)Im lost…

Answer #5: (c) 200 watt A woman exerts 100 N of force pushing a grocery cart 5 meters in 2.5 seconds. How much power did she exert?

Horsepower (hp) is a commonly used unit of power. 1hp = 746 watts(W)

For example… Let's carry a box of books up a set of stairs. From experience, we know that running the books up the stairs takes more energy than walking the same distance (you would be more tired if you ran). But the amount of work done is the same since the books weighed the same and moved the same distance each trip. However, the work is done much faster if we run, so energy must be converted faster. Therefore, more power is required.

For example #2… Think of a racecar versus an economy car. They both can travel the same distance, but the race car does it much faster since it is capable of expending much more energy in much less time. This is because the more powerful car can convert energy quicker.

For example #3… Think of an 18-wheeler versus an economy car. They both can travel the same distance, but the economy car does it much faster since it is capable of expending much more energy in much less time. BUT… The truck can carry more weight (exert a greater force) and is more powerful…

Electrical Power Electrical Power is defined the same way. Work must be done to move electrons through the electrical devices (i.e.,resistance). More resistance means more work must be done to allow the device to operate. More electrical power means more energy is being converted. This electrical energy is supplied by the source of the electrical current, like a battery or generator.

Energy The ability to do work. An object has energy if it is able to produce change in itself or its surroundings.

Energy lets us do work Energy is the ability to do Work Energy is important to all living things in order to maintain life functions. Humans use energy to modify their environment and perform work. Energy is measured by the amount of work it is able to do. The units of energy are joules (J).

Energy exists in different forms 1. Mechanical energy (moving objects and their positions) 2. Radiant energy (light and solar energy) 3. Chemical energy (including the food you eat and fuels we burn) 4. Thermal or heat energy (molecules moving faster means more heat) 5. Electrical energy (electrons moving through a wire) 6. Nuclear energy (energy locked in the nucleus of an atom)

Energy can be transferred… Fossil fuels like coal and oil can be burned to heat water that boils into steam that turns a turbine to generate electricity that you use to operate a stereo. Chemical energy Thermal energy Thermal energy Kinetic energy Kinetic energy Electrical energy

Energy cannot be created or destroyed. In the example of riding a bicycle down a steep hill, you begin with a lot of potential energy at the top of the hill and gain kinetic energy as you coast down the hill. If you are not making the kinetic energy (movement down the hill), where does it come from? The answer is simple: your potential energy at the top is transformed into kinetic energy as you speed along.

Mechanical Energy Kinetic & Potential Kinetic is the energy of moving objects. Potential Energy is stored energy. Gravitational PE is energy due to position.

Mechanical Energy - II As you speed down a steep hill on a bicycle, you are moving and therefore have kinetic energy. But where did this energy come from? You probably already know that it came from your position at the top of the hill. At the top of the hill, you had the ability to do work (move the bicycle) purely because of where you were. You had the potential to perform the work of moving the bicycle. Whenever you work with mechanical energy, you probably are dealing with both forms together in the same system.

Potential Energy Energy that is a result of an objects position or condition. All potential energy is Stored Energy. – Pull back on a bow string and bend the bow. The object then possesses potential energy.

A rock on a table top has more potential energy than when it is on the ground due to its position. This is a form of gravitational potential energy. Fuel is an example of chemical potential energy, due to its ability to burn. Potential Energy

Gravitational Potential Energy Depends on mass and height. GPE = m(g)h m = mass g = acceleration due to gravity h = height -What are the Units of GPE?

SI units? m = kg g = m/s 2 h = m PE = (kg · m/s 2 ) * m = N*m = J

Question #6 A man lifts a 2 kilogram book from the floor to the top of a 1.25 meter tall table. What is the change in the books gravitational potential energy? a)0 joules b)+2.50 joules c)-2.50 joules d) joules e) joules

Answer #6: (d) J A man lifts a 2 kilogram book from the floor to the top of a 1.25 meter tall table. What is the change in the books gravitational potential energy?

Question #7 A mouse now pushes a book (2 kg) off the table (1.25m). What is the change in the books gravitational potential energy? a)0 joules b)+2.50 joules c)-2.50 joules d) joules e) joules

Answer #7: (e) J A man lifts a 2 kilogram book from the floor to the top of a 1.25 meter tall table. What is the change in the books gravitational potential energy?

Kinetic Energy Energy that appears in the form of motion. Depends on the mass and speed of the object in motion.

Kinetic Energy KE = (1/2)mv 2 m = mass v = velocity Unit for energy is Joule (J) it is defined as a Newton Meter.

SI units?

Kinetic Energy Energy due to motion. A brick falling at the same speed as a ping pong ball will do more damage. KE is dependent on mass. KE also depends on speed (v)

Which would affect the kinetic energy of an object more, doubling its mass or its velocity? doubling the mass would result in a doubling of the KE. doubling the velocity would quadruple the KE. Kinetic Energy

Question #8 What is the KE of a 1140 kg (2513 lb) car driving at 8.95 m/s (20 mph)? a)0 joules b) joules c)10203 joules d)4.57x10 4 joules e)Im lost…

Answer #8: (d) J What is the KE of a 1140 kg (2513 lb) car driving at 8.95 m/s (20 mph)?

Question #9 What is the KE of 11 pound rabbit running at mph? Note: 1 ton = kg and 1 mph = m/s. a)0 joules b) joules c)10203 joules d)4.57x10 4 joules e)Im lost…

Answer #9 What is the KE of 11 pound rabbit running at mph? Note: 1 pound = kg and 1 mph = m/s.

Recall, Law of Conservation of Energy Energy can not be created nor destroyed. Energy can change from one form to another. The total energy in the universe is constant.

Conservation of Energy In a roller coaster all of the energy for the entire ride comes from the conveyor belt that takes the cars up the first hill.

Examples A 400 kg roller coaster car sits at the top of the first hill of the Magnum XL200. If the hill is 151 ft (46 m) tall, what is the potential energy of the cart? What is the speed of the cart at the bottom (what do you need to ignore?) How much KE and PE does the car have half way down the hill?

Answers Energy at Top = Energy at Bottom Ignoring friction – assume 100% energy conversion Energy at Top – GPE = 400 kg x 9.8 m/s 2 x 46 m = Joules – KE = 0 Energy at Bottom – GPE = 0 – KE = 1/2 x 400 kg x v = 200 v 2 Velocity at Bottom = 30 m/s = 67 mph

Answers Energy at Top = Energy at Bottom Energy at Halfway point? – 1/2 PE = J – 1/2 KE = J Speed at Halfway point = ? – 1/2 of 30 m/s = 15 m/s = 33.5 mph NO !!!!!! – 1/2 mv 2 = – Velocity = 21.2 m/s = 47.5 mph

The End