Chapter 7 Demand Forecasting in a Supply Chain

Slides:



Advertisements
Similar presentations
Chapter 7 Demand Forecasting in a Supply Chain Forecasting -5 Adaptive Trend and Seasonality Adjusted Exponential Smoothing Ardavan Asef-Vaziri References:
Advertisements

Forecasting OPS 370.
4/16/ Ardavan Asef-Vaziri Variable of interest Time Series Analysis.
PowerPoint presentation to accompany Chopra and Meindl Supply Chain Management, 5e 1-1 Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall.
Chapter 7 Demand Forecasting in a Supply Chain Forecasting -4 Adaptive Trend Adjusted Exponential Smoothing Ardavan Asef-Vaziri References: Supply Chain.
Forecasting 5 June Introduction What: Forecasting Techniques Where: Determine Trends Why: Make better decisions.
Chapter 12 - Forecasting Forecasting is important in the business decision-making process in which a current choice or decision has future implications:
Trend and Seasonality; Static 1 Ardavan Asef-Vaziri Chapter 7 Demand Forecasting in a Supply Chain Forecasting -3 Static Trend and Seasonality Ardavan.
Data Sources The most sophisticated forecasting model will fail if it is applied to unreliable data Data should be reliable and accurate Data should be.
Forecasting.
Supply Chain Management Lecture 11. Outline Today –Homework 2 –Chapter 7 Thursday –Chapter 7 Friday –Homework 3 Due Friday February 26 before 5:00pm.
Chapter 7 Demand Forecasting in a Supply Chain Forecasting - 4 Trend Adjusted Exponential Smoothing Ardavan Asef-Vaziri References: Supply Chain Management;
Supply Chain Management
Supply Chain Management Lecture 12. Outline Today –Chapter 7 Homework 3 –Online tomorrow –Due Friday February 26 before 5:00pm Next week Thursday –Finish.
Demand Forecasts The three principles of all forecasting techniques: –Forecasting is always wrong –Every forecast should include an estimate of error –The.
Slides 13b: Time-Series Models; Measuring Forecast Error
Fall, 2012 EMBA 512 Demand Forecasting Boise State University 1 Demand Forecasting.
1 Demand Planning: Part 2 Collaboration requires shared information.
Group No :- 9 Chapter 7 :- Demand forecasting in a supply chain. Members : Roll No Name 1118 Lema Juliet D 1136 Mwakatundu T 1140 Peter Naomi D 1143 Rwelamila.
The Importance of Forecasting in POM
Demand Management and Forecasting
Planning Demand and Supply in a Supply Chain
Forecasting OPS 370.
Forecasting supply chain requirements
Forecasting Professor Ahmadi.
© 2004 Prentice-Hall, Inc. Chapter 7 Demand Forecasting in a Supply Chain Supply Chain Management (2nd Edition) 7-1.
DSc 3120 Generalized Modeling Techniques with Applications Part II. Forecasting.
Frank Davis 7/25/2002Demand Forecasting in a Supply Chain1.
PowerPoint presentation to accompany Chopra and Meindl Supply Chain Management, 5e 1-1 Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall.
Planning Demand and Supply in a Supply Chain Forecasting and Aggregate Planning.
MBA.782.ForecastingCAJ Demand Management Qualitative Methods of Forecasting Quantitative Methods of Forecasting Causal Relationship Forecasting Focus.
Forecasting February 26, Laws of Forecasting Three Laws of Forecasting –Forecasts are always wrong! –Detailed forecasts are worse than aggregate.
McGraw-Hill/Irwin © 2011 The McGraw-Hill Companies, All Rights Reserved Chapter 15 Demand Management and Forecasting.
Operations Fall 2015 Bruce Duggan Providence University College.
1 1 Slide Forecasting Professor Ahmadi. 2 2 Slide Learning Objectives n Understand when to use various types of forecasting models and the time horizon.
Forecasting. 預測 (Forecasting) A Basis of Forecasting In business, forecasts are the basis for budgeting and planning for capacity, sales, production and.
Maintenance Workload Forecasting
1 Chapter 13 Forecasting  Demand Management  Qualitative Forecasting Methods  Simple & Weighted Moving Average Forecasts  Exponential Smoothing  Simple.
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Business Processes Sales Order Management Aggregate Planning Master Scheduling Production Activity Control Quality Control Distribution Mngt. © 2001 Victor.
Welcome to MM305 Unit 5 Seminar Prof Greg Forecasting.
7-1Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall. Course Code MGT 561 Supply Chain Management Book: Supply Chain Management Strategy,
CHAPTER 12 FORECASTING. THE CONCEPTS A prediction of future events used for planning purpose Supply chain success, resources planning, scheduling, capacity.
To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved. Chapter 8 Forecasting To Accompany.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 3 Forecasting.
Demand Management and Forecasting Chapter 11 Portions Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Chapter 11 – With Woodruff Modications Demand Management and Forecasting Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Welcome to MM305 Unit 5 Seminar Dr. Bob Forecasting.
Welcome to MM305 Unit 5 Seminar Forecasting. What is forecasting? An attempt to predict the future using data. Generally an 8-step process 1.Why are you.
Chapter 7 Demand Forecasting in a Supply Chain Supply Chain Management 7-1.
Demand Forecasting Fall, 2016 EMBA 512 Demand Forecasting
Chapter 18: Forecasting LO18–1: Understand how forecasting is essential to supply chain planning. LO18–2: Evaluate demand using quantitative forecasting.
Forecasting Demand in a Supply Chain
Chapter 7 Demand Forecasting in a Supply Chain
Forecasting Chapter 9.
Forecasts.
Operations Management Contemporary Concepts and Cases
Chapter 7 Demand Forecasting in a Supply Chain
Mechanical Engineering Haldia Institute of Technology
Demand Management and Forecasting
Forecasting Chapter 11.
Fall, 2017 EMBA 512 Demand Forecasting
FORCASTING AND DEMAND PLANNING
Stevenson 3 Forecasting.
Competing on Cost PART IV.
Principles of Supply Chain Management: A Balanced Approach
Forecasting Chapter 15.
Forecasting is an Integral Part of Business Planning
Demand Management and Forecasting
Chap 4: Exponential Smoothing
Presentation transcript:

Chapter 7 Demand Forecasting in a Supply Chain Supply Chain Management Chapter 7 Demand Forecasting in a Supply Chain 7-1

Role of Forecasting in a Supply Chain The basis for all strategic and planning decisions in a supply chain Used for both push and pull processes Examples: Production: scheduling, inventory, aggregate planning Marketing: sales force allocation, promotions, new production introduction Finance: plant/equipment investment, budgetary planning Personnel: workforce planning, hiring, layoffs All of these decisions are interrelated

Characteristics of Forecasts Forecasts are always wrong. Should include expected value and measure of error. Long-term forecasts are less accurate than short-term forecasts (forecast horizon is important) Aggregate forecasts are more accurate than disaggregate forecasts

Forecasting Methods Qualitative: primarily subjective; rely on judgment and opinion Time Series: use historical demand only Static Adaptive Causal: use the relationship between demand and some other factor to develop forecast Simulation Imitate consumer choices that give rise to demand Can combine time series and causal methods Notes:

Components of an Observation Observed demand (O) = Systematic component (S) + Random component (R) Level (current deseasonalized demand) Trend (growth or decline in demand) Seasonality (predictable seasonal fluctuation) Systematic component: Expected value of demand Random component: The part of the forecast that deviates from the systematic component Forecast error: difference between forecast and actual demand

Time Series Forecasting Forecast demand for the next four quarters. Notes:

Time Series Forecasting Notes:

Time Series Forecasting Methods Goal is to predict systematic component of demand Multiplicative: (level)(trend)(seasonal factor) Additive: level + trend + seasonal factor Mixed: (level + trend)(seasonal factor) Static methods Adaptive forecasting Moving average Simple exponential smoothing Holt’s model (with trend) Winter’s model (with trend and seasonality)

Static Methods Assume a mixed model: Systematic component = (level + trend)(seasonal factor) Ft+l = [L + (t + l)T]St+l (forecast in period t for demand in period t + l) L = estimate of level for period 0 T = estimate of trend St = estimate of seasonal factor for period t Dt = actual demand in period t Ft = forecast of demand in period t

Static Methods Estimating level and trend Estimating seasonal factors

Time Series Forecasting Forecast demand for the next four quarters. Notes:

Time Series Forecasting Notes:

Estimating Level and Trend Deseasonalize the Demand Deseasonalized demand: Demand that would have been observed in the absence of seasonal fluctuations Periodicity (p) the number of periods after which the seasonal cycle repeats itself In our example: p = 4

Deseasonalizing Demand [Dt-(p/2) + Dt+(p/2) + S 2Di] / 2p for p even Dt = (sum is from i = t+1-(p/2) to t-1+(p/2)) S Di / p for p odd (sum is from i = t-[(p-1)/2] to t+[(p-1)/2]

Deseasonalizing Demand For the example, p = 4 is even For t = 3: D3 = (D1 + D5 + 2D2+2D3+2D4)/8 = {8000+10000+[(2)(13000)+(2)(23000)+(2)(34000)]}/8 = 19750 D4 = {D2 + D6 + 2D3+2D4+2D5}/8 = {13000+18000+[(2)(23000)+(2)(34000)+(2)(10000)]/8 = 20625

Deseasonalized Demand

Time Series of Demand

Deseasonalizing Demand Then include trend Dt = L + tT where Dt = deseasonalized demand in period t L = level (deseasonalized demand at period 0) T = trend (rate of growth of deseasonalized demand) Trend is determined by linear regression using deseasonalized demand as the dependent variable and period as the independent variable (can be done in Excel) In the example, L = 18,439 and T = 524

Estimating Seasonal Factors Use the previous equation to calculate deseasonalized demand for each period St = Dt / Dt = seasonal factor for period t In the example, D2 = 18439 + (524)(2) = 19487 D2 = 13000 S2 = 13000/19487 = 0.67 The seasonal factors for the other periods are calculated in the same manner

Estimating Seasonal Factors

Estimating Seasonal Factors The overall seasonal factor for a “season” is then obtained by averaging all of the factors for a “season” If there are r seasonal cycles, for all periods of the form pt+i, 1<i<p, the seasonal factor for season i is Si = [Sum(j=0 to r-1) Sjp+i]/r In the example, there are 3 seasonal cycles in the data and p=4, so S1 = (0.42+0.47+0.52)/3 = 0.47 S2 = (0.67+0.83+0.55)/3 = 0.68 S3 = (1.15+1.04+1.32)/3 = 1.17 S4 = (1.66+1.68+1.66)/3 = 1.67

Estimating the Forecast Using the original equation, we can forecast the next four periods of demand: F13 = (L+13T)S1 = [18439+(13)(524)](0.47) = 11868 F14 = (L+14T)S2 = [18439+(14)(524)](0.68) = 17527 F15 = (L+15T)S3 = [18439+(15)(524)](1.17) = 30770 F16 = (L+16T)S4 = [18439+(16)(524)](1.67) = 44794

Adaptive Forecasting The estimates of level, trend, and seasonality are adjusted after each demand observation Moving average Simple exponential smoothing Trend-corrected exponential smoothing (Holt’s model) Trend- and seasonality-corrected exponential smoothing (Winter’s model)

Basic Formula for Adaptive Forecasting Ft+1 = (Lt + lTt)St+1 = forecast for period t+l in period t Lt = Estimate of level at the end of period t Tt = Estimate of trend at the end of period t St = Estimate of seasonal factor for period t Ft = Forecast of demand for period t Dt = Actual demand observed in period t Et = Forecast error in period t At = Absolute deviation for period t = |Et| MAD = Mean Absolute Deviation = average value of At

General Steps in Adaptive Forecasting Initialize: Compute initial estimates of level (L0), trend (T0), and seasonal factors (S1,…,Sp). This is done as in static forecasting. Forecast: Forecast demand for period t+1 using the general equation Estimate error: Compute error Et+1 = Ft+1- Dt+1 Modify estimates: Modify the estimates of level (Lt+1), trend (Tt+1), and seasonal factor (St+p+1), given the error Et+1 in the forecast Repeat steps 2, 3, and 4 for each subsequent period

Moving Average Used when demand has no observable trend or seasonality Systematic component of demand = level The level in period t is the average demand over the last N periods (the N-period moving average) Current forecast for all future periods is the same and is based on the current estimate of the level Lt = (Dt + Dt-1 + … + Dt-N+1) / N Ft+1 = Lt and Ft+n = Lt After observing the demand for period t+1, revise the estimates as follows: Lt+1 = (Dt+1 + Dt + … + Dt-N+2) / N Ft+2 = Lt+1

Moving Average Example At the end of period 4, what is the forecast demand for periods 5 through 8 using a 4-period moving average? L4 = (D4+D3+D2+D1)/4 = (34000+23000+13000+8000)/4 = 19500 F5 = 19500 = F6 = F7 = F8 Observe demand in period 5 to be D5 = 10000 Forecast error in period 5, E5 = F5 - D5 = 19500 - 10000 = 9500 Revise estimate of level in period 5: L5 = (D5+D4+D3+D2)/4 = (10000+34000+23000+13000)/4 = 20000 F6 = L5 = 20000

Simple Exponential Smoothing Used when demand has no observable trend or seasonality Systematic component of demand = level Initial estimate of level, L0, assumed to be the average of all historical data L0 = [Sum(i=1 to n)Di]/n Current forecast for all future periods is equal to the current estimate of the level and is given as follows: Ft+1 = Lt and Ft+n = Lt After observing demand Dt+1, revise the estimate of the level: Lt+1 = aDt+1 + (1-a)Lt

Simple Exponential Smoothing Example L0 = average of all 12 periods of data = Sum(i=1 to 12)[Di]/12 = 22083 F1 = L0 = 22083 Observed demand for period 1 = D1 = 8000 Forecast error for period 1, E1, is as follows: E1 = F1 - D1 = 22083 - 8000 = 14083 Assuming a = 0.1, revised estimate of level for period 1: L1 = aD1 + (1-a)L0 = (0.1)(8000) + (0.9)(22083) = 20675 F2 = L1 = 20675

Trend-Corrected Exponential Smoothing (Holt’s Model) Appropriate when the demand is assumed to have a level and trend in the systematic component of demand but no seasonality Obtain initial estimate of level and trend by running a linear regression of the following form: Dt = b + at L0 = b T0 = a In period t, the forecast for future periods is expressed as follows: Ft+1 = Lt + Tt Ft+n = Lt + nTt

Trend-Corrected Exponential Smoothing (Holt’s Model) After observing demand for period t, revise the estimates for level and trend as follows: Lt+1 = aDt+1 + (1-a)(Lt + Tt) Tt+1 = b(Lt+1 - Lt) + (1-b)Tt a = smoothing constant for level b = smoothing constant for trend Example: Forecast demand for period 1 using Holt’s model (trend corrected exponential smoothing) Using linear regression, L0 = 12015 (linear intercept) T0 = 1549 (linear slope)

Holt’s Model Example (continued) Forecast for period 1: F1 = L0 + T0 = 12015 + 1549 = 13564 Observed demand for period 1 = D1 = 8000 E1 = F1 - D1 = 13564 - 8000 = 5564 Assume a = 0.1, b = 0.2 L1 = aD1 + (1-a)(L0+T0) = (0.1)(8000) + (0.9)(13564) = 13008 T1 = b(L1 - L0) + (1-b)T0 = (0.2)(13008 - 12015) + (0.8)(1549) = 1438 F2 = L1 + T1 = 13008 + 1438 = 14446 F5 = L1 + 4T1 = 13008 + (4)(1438) = 18760

Trend- and Seasonality-Corrected Exponential Smoothing Appropriate when the systematic component of demand is assumed to have a level, trend, and seasonal factor Systematic component = (level+trend)(seasonal factor) Assume periodicity p Obtain initial estimates of level (L0), trend (T0), seasonal factors (S1,…,Sp) using procedure for static forecasting In period t, the forecast for future periods is given by: Ft+1 = (Lt+Tt)(St+1) and Ft+n = (Lt + nTt)St+n

Trend- and Seasonality-Corrected Exponential Smoothing (continued) After observing demand for period t+1, revise estimates for level, trend, and seasonal factors as follows: Lt+1 = a(Dt+1/St+1) + (1-a)(Lt+Tt) Tt+1 = b(Lt+1 - Lt) + (1-b)Tt St+p+1 = g(Dt+1/Lt+1) + (1-g)St+1 a = smoothing constant for level b = smoothing constant for trend g = smoothing constant for seasonal factor

Trend- and Seasonality-Corrected Exponential Smoothing Example Example: Forecast demand for period 1 using Winter’s model. Initial estimates of level, trend, and seasonal factors are obtained as in the static forecasting case: L0 = 18439, T0 = 524, S1=0.47, S2=0.68, S3=1.17, S4=1.67 F1 = (L0 + T0)S1 = (18439+524)(0.47) = 8913 The observed demand for period 1 = D1 = 8000 Forecast error for period 1 = E1 = F1-D1 = 8913 - 8000 = 913 Assume a = 0.1, b=0.2, g=0.1; revise estimates for level and trend for period 1 and for seasonal factor for period 5 L1 = a(D1/S1)+(1-a)(L0+T0) = (0.1)(8000/0.47)+(0.9)(18439+524)=18769 T1 = b(L1-L0)+(1-b)T0 = (0.2)(18769-18439)+(0.8)(524) = 485 S5 = g(D1/L1)+(1-g)S1 = (0.1)(8000/18769)+(0.9)(0.47) = 0.47 F2 = (L1+T1)S2 = (18769 + 485)(0.68) = 13093

Measures of Forecast Error Forecast error = Et = Ft - Dt Mean squared error (MSE) MSEn = (Sum(t=1 to n)[Et2])/n Absolute deviation = At = |Et| Mean absolute deviation (MAD) MADn = (Sum(t=1 to n)[At])/n Mean absolute percentage error (MAPE) MAPEn = 100*(Sum(t=1 to n)|Et/ Dt|)/n Bias = Sum(t=1 to n)[Et] Shows whether the forecast consistently under- or overestimates demand; should fluctuate around 0 Tracking Signal = Bias / MAD Should be within the range of +6. Otherwise, possibly use a new forecasting method

Forecasting in Practice Collaborate in building forecasts The value of data depends on where you are in the supply chain Be sure to distinguish between demand and sales