Magic Numbers– Ratisbona 1 Magic Numbers of Boson 4He Clusters: the Auger evaporation mechanism Giorgio Benedek with Elena Spreafico (UNIMIB, Milano) J. Peter Toennies (MPI-DS, Göttingen) Oleg Kornilov (MBI-NOK, Berlin)
are there magic numbers or stability regions for boson clusters? Classical noble gas (van der Waals) clusters: - geometrical constraints only - magic numbers = highest point symmetry Quantum Bose clusters (4He)N are superfluid - no apparent geometrical constraint - no shell-closure argument are there magic numbers or stability regions for boson clusters? Magic Numbers– Ratisbona 2
Theory (QMC): no magic numbers predicted for 4He clusters! - R. Melzer and J. G. Zabolitzky (1984) - M. Barranco, R. Guardiola, S. Hernàndez, R. Mayol, J. Navarro, and M. Pi. (2006) Binding energy per atom vs. N: a monotonous slope, with no peaks nor regions of larger stability! Magic Numbers– Ratisbona 3
Magic Numbers– Ratisbona 4 More recent highly accurate diffusion Monte Carlo (T=0) calculation rules out existence of magic numbers due to stabilities: R. Guardiola,O. Kornilov, J. Navarro and J. P. Toennies, J. Chem Phys, 2006 Cluster Number Size N Magic Numbers– Ratisbona 4
4He clusters - formed in nozzle beam vacuum expansion T0= 6.7K P0 ≥ 20bar T= 0.37K - formed in nozzle beam vacuum expansion - stabilized through evaporative cooling clusters are superfluid! Magic Numbers– Ratisbona 5
Can discriminate against atoms with mass spectrometer set at mass 8 and larger from J. P. Toennies Ratisbona 7
Electron Microscope Picture of the SiNx Transmission Gratings Courtesy of Hank Smith and Tim Savas, MIT Ratisbona 7
Searching for Large 4He Clusters: 4HeN from J. P. Toennies Ratisbona 8
Diffraction experiments with (4He)N clusters show stability regions! Magic numbers, excitation levels, and other properties of small neutral 4He clusters Rafael Guardiola Departamento de Física Atómica y Nuclear, Facultad de Fisica, Universidad de Valencia, 46100 Burjassot, Spain Oleg Kornilov Max-Planck-Institut fur Dynamik und Selbstorganisation, Bunsenstrasse 10, 37073 Gottingen, Germany Jesús Navarro IFIC (CSIC-Universidad de Valencia), Apartado 22085, 46071 Valencia, Spain J. Peter Toennies Ratisbona 9
R. Brühl, R. Guardiola, A. Kalinin, O. Kornilov, J. Navarro, T R. Brühl, R. Guardiola, A. Kalinin, O. Kornilov, J. Navarro, T. Savas and J. P. Toennies, Phys. Rev. Lett. 92, 185301 (2004) Ratisbona 10
The size of 4He clusters R(N) = (1.88Å) N 1/3 + (1.13 Å) / (N 1/3 1) QMC (V. R. Pandharipande, J.G. Zabolitzky, S. C. Pieper, R. B. Wiringa, and U. Helmbrecht, Phys. Rev. Lett. 50, 1676 (1973) R(N) = (1.88Å) N 1/3 + (1.13 Å) / (N 1/3 1) Ratisbona 11
Single-particle excitation theory of evaporation and cluster stability spherical box model Magic numbers! Ratisbona 12
Atomic radial distributions 4Hen Barranco et al (2006) 3Hen Ratisbona 13
Fitting a spherical-box model (SBM) to QMC calculations Condition: same number of quantum single-particle levels this can be achieved with: - a(N) = QMC average radius - V0(N) = μB of bulk liquid - a constant effective mass m* From: Ratisbona 14
this m*/m value works well for all N since QMC (Pandharipande et al 1988) the linear fit of QMC shell energies () for (4He)70 rescaled to the bulk liquid μB gives m*~ 3.2 m this m*/m value works well for all N since Ratisbona 15
fair linearity also for 3He clusters
The Auger-evaporation mechanism exchange-symmetric two-atom wavefunction Ratisbona 16
6-12 Lennard-Jones potential = 40 Å3 C6 = 1.461 a.u. d0 < r < R(N) Integration volume R(N) = cluster radius Ratisbona 17
Tang-Toennies potential Replaced by co-volume (excluded volume) Ratisbona 18
- Center-of-mass reference total L = even μ() = 7.3 K m* = 3.2 4 a.u. - Auger-evaporation probability Ratisbona 19
Ionisation efficiency Ratisbona 20 - Cluster kinetics in a supersonic beam stationary fission and coalescence neglected: cluster relative velocity very small - Cluster size distribution: - Comparison to experiment: Jacobian factor Gaussian spread (s 0.002) Ionisation efficiency
Calculated 4He cluster size distribution at different temperatures Ratisbona 21
Comparison to experiment I Ratisbona 22
Comparison to experiment II dependence on choice of potential bottom [remember: m*(N) ~ const/V(N)] Ratisbona 23
Guardiola et al thermodynamic approach HeN-1 + He ↔ HeN Formation-evaporation equilibrium: Equilibrium constant: ZN = partition function: Magic Numbers at each insertion of a new bound state Guardiola et al., JCP (2006) Ratisbona 24
Ratisbona 25
Do magic numbers persist in doped clusters? larger stability = larger density = larger renormalization of the dopant effective momentum of inertia I* same oscillations?
For each N there is a distribution n(N,T) derived from P(N,T) Auger evaporation lowers T, and P = P(N,T) changes with N and T T = 0.37 K For each N there is a distribution n(N,T) derived from P(N,T) Ratisbona 26
For each evaporation process N+1 → N : The cooling for the evaporation sequence N’→N is then e.g., for a cooling T0 = 6.7 K → Tf = 0.37K and |V0|= 7.3 K : N = N’/2.38 in principle the distribution n*(N) contains clusters of all temperatures < T0 Ratisbona 27
i.e., The actual amplitudes of n*(N) oscillations are smaller than those calculated for n(N,Tf) : Ratisbona 28
In conclusion we have seen that… High-resolution grating diffraction experiments allow to study the stability of 4He clusters Experimental evidence for the stability of the 4He dimer and the existence of magic numbers in 4He boson clusters A kinetic theory based on the Auger evaporation mechanism for a spherical-box model qualitatively accounts for the experimental cluster size distributions Substantial agreement with Guardiola et al thermodynamic approach: magic numbers related to the insertion of new bound states with increasing N Ratisbona 28