Database Application Development

Slides:



Advertisements
Similar presentations
Database Management Systems, R. Ramakrishnan and J. Gehrke1 SQL: Queries, Programming, Triggers Chapter 5.
Advertisements

Introduction to Database Systems 1 SQL: The Query Language Relation Model : Topic 4.
CSC343 – Introduction to databases – A. Vaisman1 Database Application Development.
CSC056-Z1 – Database Management Systems – Vinnie Costa – Hofstra University1 Database Management Systems Session 6 Instructor: Vinnie Costa
CMPT 354, Simon Fraser University, Fall 2008, Martin Ester 250 Database Systems I SQL in a Server Environment.
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 13 Introduction to SQL Programming Techniques.
Midterm Review Lecture 14b. 14 Lectures So Far 1.Introduction 2.The Relational Model 3.Disks and Files 4.Relational Algebra 5.File Org, Indexes 6.Relational.
1 Database Application Development Chapter 6. 2 Overview  SQL in application code  Embedded SQL  Cursors  Dynamic SQL  JDBC  Stored procedures.
1 Database Application Development Chapter 6. 2 Overview  SQL in application code  Embedded SQL  Cursors  Dynamic SQL  JDBC  Stored procedures.
SPRING 2004CENG 3521 SQL: Constraints, Triggers, Embedded SQL Chapters: 5, 6.
Database Application Development R&G Chapter 6 Lecture 16.
Internet Database Application Development Module 6.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke; edited K. Shomper1 Database Application Development Chapter 6.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Database Application Development Chapter 6.
Announcements Read JDBC Project Step 5, due Monday.
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 9- 1 DATADABASE PROGRAMMING 2Chapter 13 from our text.
ICS 321 Fall 2009 ODBC, JDBC & Stored Procedures Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 10/8/20091Lipyeow.
CSCD34 - Data Management Systems – A. Vaisman1 Database Application Development.
1 Database Application Development Chapter 6 Sections 6.1 –
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Database Application Development Chapter 6 Sections –
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Database Application Development Chapter 6 Sections 6.1 –
Introduction to SQL ; Christoph F. Eick & R. Ramakrishnan and J. Gehrke 1 Introduction to SQL Part III COSC 3480 Teaching Plan Part 1.SQL in 45 Minutes.
1 Database Application Development Chapter 6 Sections –
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Database Application Development Chapter 6.
Database Management Systems 1 Raghu Ramakrishnan Database Application Development Chpt 6 Xin Zhang.
Database Application Development Database Programming Embedded SQL Dynamic SQL Embedded SQL in Java Database APIs: Alternative to embedding Embedded SQL.
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Database Application Development Chapter 6.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Database Application Development Chapter 6.
1 Database Application Development Programming With Databases.
COP Introduction to Database Structures
Chapter 4 An Introduction to SQL.
CF 1334 Sistem Basis Data (3 SKS)
Diskusi-08 Jelaskan dan berikan contoh penggunaan theta join, equijoin, natural join, outer join, dan semijoin The slides for this text are organized into.
Diskusi-5 Sebutkan perangkat (tools) yang berpotensi mendukung kebutuhan tugas-tugas manajerial (management work) Jelaskan enam karakteristik informasi.
Storage and Indexes Chapter 8 & 9
Query-by-Example (QBE)
Database Application Development
Diskusi-1 Bacalah materi chapter-01, lalu buatlah ringkasan yang berisi tentang : Definisi EUIS Siapa end user Dampak euis pada lingkungan kerja Perencanaan.
Latihan Answer the following questions using the relational schema from the Exercises at the end of Chapter 3: Create the Hotel table using the integrity.
Diskusi-16 Buatlah ringkasan tentang pertimbangan dalam desain yang ergonomis pada tiga perangkat utama komputer yaitu monitor, keyboard dan mouse (lihat.
Database Application Development
Database Application Development
Latihan Create a separate table with the same structure as the Booking table to hold archive records. Using the INSERT statement, copy the records from.
Tugas-05 a. Sebutkan primary key masing-masing tabel
Introduction to Query Optimization
SQL: Queries, Programming, Triggers
Relational Algebra Chapter 4, Part A
Modeling Your Data Chapter 2 cs542
File Organizations Chapter 8 “How index-learning turns no student pale
CPSC-310 Database Systems
SQL: The Query Language
CPSC-310 Database Systems
Database Application Development
Team Project, Part II NOMO Auto, Part II IST 210 Section 4
SQL: The Query Language Part 1
Relational Algebra Chapter 4, Sections 4.1 – 4.2
SQL: Queries, Programming, Triggers
DB Programming: SQL Programming Techniques
SQL: Structured Query Language
CS 186, Fall 2002, Lecture 8 R&G, Chapter 4
Evaluation of Relational Operations: Other Techniques
Distributed Databases
Database Application Development
Introduction to Database Systems
File Organizations and Indexing
COSC 3480 Projects & Homeworks Fall 2003
Database Application Development
Database Application Development
Relational Calculus Chapter 4, Part B
Presentation transcript:

Database Application Development The slides for this text are organized into chapters. This lecture covers Chapter 6. I Foundations •Chapter 1: Introduction •Chapter 2: ER Model and Conceptual Design •Chapter 3: The Relational Model and SQL DDL •Chapter 4: Relational Algebra and Relational Calculus •Chapter 5: SQL II Applications •Chapter 6: Database Application Development •Chapter 7: Database-backed Internet Applications III Systems •Chapter 8: Overview of Storage and Indexing •Chapter 9: Data Storage •Chapter 10: Tree Indexes •Chapter 11: Hash Indexes IV Systems •Chapter 12: Overview of Query Evaluation •Chapter 13: External Sorting •Chapter 14: Evaluation of Relational Operators: First part (joins) and second part (other operators) •Chapter 15: A Typical Relational Optimizer V Systems •Chapter 16: Overview of Transaction Management •Chapter 17: Concurrency Control •Chapter 18: Recovery VI Applications •Chapter 19: Schema Refinement, Functional Dependencies, Normalization •Chapter 20: Physical Database Design, Database Tuning •Chapter 21: Security and Authorization VII Advanced Topics •Chapter 22: Parallel and Distributed Database Systems •Chapter 23: Data Warehousing and Decision Support •Chapter 24: Object-Database Systems •Chapter 25: Deductive Databases •Chapter 26: Data Mining •Chapter 27: Information Retrieval and XML Data Management •Chapter 28: Spatial Databases  

Overview Concepts: SQL in application code Embedded SQL Cursors Dynamic SQL Stored procedures

SQL in Application Code SQL commands can be called from within a host language (e.g., C++ or Java) program. SQL statements can refer to host variables (including special variables used to return status). Must include a statement to connect to the right database. Two main integration approaches: Embed SQL in the host language (Embedded SQL, SQLJ) Create special API to call SQL commands (JDBC)

SQL in Application Code (Contd.) Impedance mismatch: SQL relations are (multi-) sets of records, with no a priori bound on the number of records. No such data structure exist traditionally in procedural programming languages such as C or C++. SQL supports a mechanism called a cursor to handle this.

Overview Concepts: SQL in application code Embedded SQL Cursors Dynamic SQL Stored procedures

Embedded SQL Approach: Embed SQL in the host language. A preprocessor converts the SQL statements into special API calls. Then a regular compiler is used to compile the code. Language constructs: Connecting to a database: EXEC SQL CONNECT Declaring variables: EXEC SQL BEGIN (END) DECLARE SECTION Statements: EXEC SQL Statement 16

Embedded SQL: Variables In the host program: EXEC SQL BEGIN DECLARE SECTION char c_sname[20]; long c_sid; short c_rating; float c_age; EXEC SQL END DECLARE SECTION Two special “error” variables: SQLCODE (long, is negative if an error has occurred) SQLSTATE (char[6], predefined codes for common errors)

Overview Concepts: SQL in application code Embedded SQL Cursors Stored procedures

Cursors Can declare a cursor on a relation or query statement (which generates a relation). Can open a cursor, and repeatedly fetch a tuple then move the cursor, until all tuples have been retrieved. Can use the ORDER BY clause, in queries that are accessed through a cursor, to control the order in which tuples are returned. Fields in ORDER BY clause must also appear in SELECT clause. Can also modify/delete tuple pointed to by a cursor. 16

Cursor that gets names of sailors who’ve reserved a red boat, in alphabetical order EXEC SQL DECLARE sinfo CURSOR FOR SELECT S.sname FROM Sailors S, Boats B, Reserves R WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’ ORDER BY S.sname

Embedding SQL in C: An Example char SQLSTATE[6]; EXEC SQL BEGIN DECLARE SECTION ;(=>declare section) char c_sname[20]; short c_minrating; float c_age; EXEC SQL END DECLARE SECTION c_minrating = random(); EXEC SQL DECLARE sinfo CURSOR FOR ;(=>declare section) SELECT S.sname, S.age FROM Sailors S WHERE S.rating > :c_minrating ORDER BY S.sname; EXEC SQL OPEN CURSOR sinfo ;(=>statement) do { EXEC SQL FETCH sinfo INTO :c_sname, :c_age;(=>statement) printf(“%s is %d years old\n”, c_sname, c_age); } while (SQLSTATE != ‘02000’); EXEC SQL CLOSE sinfo; ;(=>statement)

Overview Concepts: SQL in application code Embedded SQL Cursors Dynamic SQL Stored procedures

Dynamic SQL SQL query strings are now always known at compile time (e.g., spreadsheet, graphical DBMS frontend): allow construction of SQL statements on-the-fly. Example: EXEC SQL BEGIN DECLARE SECTION char c_sqlstring[]= {“DELETE FROM Sailors WHERE raiting>5”}; EXEC SQL END DECLARE SECTION EXEC SQL PREPARE readytogo FROM :c_sqlstring; EXEC SQL EXECUTE readytogo;

Stored Procedures What is a stored procedure: Advantages: Program executed through a single SQL statement Executed in the process space of the server Advantages: Can encapsulate application logic while staying “close” to the data Reuse of application logic by different users Avoid tuple-at-a-time return of records through cursors

Stored Procedures: Examples CREATE PROCEDURE ShowNumReservations SELECT S.sid, S.sname, COUNT(*) FROM Sailors S, Reserves R WHERE S.sid = R.sid GROUP BY S.sid, S.sname Stored procedures can have parameters: Three different modes: IN, OUT, INOUT CREATE PROCEDURE IncreaseRating( IN sailor_sid INTEGER, IN increase INTEGER) UPDATE Sailors SET rating = rating + increase WHERE sid = sailor_sid

Stored Procedures: Examples (Contd.) Stored procedure do not have to be written in SQL: CREATE PROCEDURE TopSailors( IN num INTEGER) LANGUAGE JAVA EXTERNAL NAME “file:///c:/storedProcs/rank.jar”

Calling Stored Procedures EXEC SQL BEGIN DECLARE SECTION Int sid; Int rating; EXEC SQL END DECLARE SECTION // now increase the rating of this sailor EXEC CALL IncreaseRating(:sid,:rating);

Calling Stored Procedures (Contd.) JDBC: CallableStatement cstmt= con.prepareCall(“{call ShowSailors}); ResultSet rs = cstmt.executeQuery(); while (rs.next()) { … } SQLJ: #sql iterator ShowSailors(…); ShowSailors showsailors; #sql showsailors={CALL ShowSailors}; while (showsailors.next()) { … }

SQL/PSM Most DBMSs allow users to write stored procedures in a simple, general-purpose language (close to SQL)  SQL/PSM standard is a representative Declare a stored procedure: CREATE PROCEDURE name(p1, p2, …, pn) local variable declarations procedure code; Declare a function: CREATE FUNCTION name (p1, …, pn) RETURNS sqlDataType local variable declarations function code;

Main SQL/PSM Constructs CREATE FUNCTION rate Sailor (IN sailorId INTEGER) RETURNS INTEGER DECLARE rating INTEGER DECLARE numRes INTEGER SET numRes = (SELECT COUNT(*) FROM Reserves R WHERE R.sid = sailorId) IF (numRes > 10) THEN rating =1; ELSE rating = 0; END IF; RETURN rating;

Main SQL/PSM Constructs (Contd.) Local variables (DECLARE) RETURN values for FUNCTION Assign variables with SET Branches and loops: IF (condition) THEN statements; ELSEIF (condition) statements; … ELSE statements; END IF; LOOP statements; END LOOP Queries can be parts of expressions Can use cursors naturally without “EXEC SQL”