Turning Objectives of machine tools (lathe)

Slides:



Advertisements
Similar presentations
Drilling Machine….
Advertisements

Chapter4 - MILLING PROCESS
MACHINE TOOL Prof. kiran gore.
…………..Continued Recap Machine tool Lathe machine Basic components
The Lathe machine.
MCQ.
Centre lathe.
Lathe.
Lathe Practice & Milling
Lathe Practice.
Conventional Machining
AUTOMATIC LATHES These are machine tools in which components are machined automatically. The working cycle is fully automatic that is repeated to produce.
Resource 2 Manufacturing Techniques Machining Operations & Techniques.
Saravanan P WELCOME. Saravanan P General Manufacturing Metal Removing( Machining) Metal Joining ( Welding, Brazing and Soldering) Metal Forming & Casting.
Lathe Machines Types of Lathes: Center Lathe Engine Lathe Bench Lathe
Chapter 22: Turning and Boring Processes
Lathe and drilling machines
Turning Operations L a t h e.
The main function of a lathe is to turn cylindrical shapes.
Classification of Lathe
Lathe Machine.
LATHE OPERATIONS The various operations that can be performed on a lathe are: Turning. Step turning. Taper turning. Thread cutting. Facing. Knurling Chamfering.
The Lathe Section 11.
Unit 4 Machine Tools Machine Tools (Basic Elements, Working principle
Lathe and drilling machines
Steady Rests, Follower Rests, and Mandrels
Chapter 22: Turning and Boring Processes
Methods of mounting of jobs and cutting tools in machine tools The job or blank and the cutting tools essentially need to be properly mounted in the machine.
Session 3 Classification of lathes Kinematics system of centre lathe
First Year, Mechanical Engineering Dept., Faculty of Engineering, Fayoum University Dr. Ahmed Salah Abou Taleb 1 Manufacturing Processes 1 (MDP 114)
Chapter 22 Turning and Boring Processes (Review) EIN 3390 Manufacturing Processes Spring, 2011.
Lathe Accessories Divided into two categories
Setting up correctly Different types and their use
LATHE MACHINE IMS ENGINEERING COLLEGE,GHAZIABAD Submitted by Ankit Chauhan ( )
Drilling machine. Introduction Drilling is a metal cutting process carried out by a rotating cutting tool to make circular holes in solid materials. Tool.
Introduction Lathe is a machine, which removes the metal from a piece of work to the required shape &size The basic lathe that was designed to cut cylindrical.
MACHINING OPERATIONS AND MACHINE TOOLS 1.Turning and Related Operations ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing.
ENM208 INTRODUCTION to MACHINING ANADOLU UNİVERSITY Industrial Engineering Department.
B.T. INSTITUTE OF RESERCH & TECHNOLOGY SAGAR (M.P.)
The Centre Lathe. Produced by Neil Liggett.
ELEMENTS OF MECHANICAL ENGINEERING
Drilling Machine… MATROJA PRITENDRASINH K. GUIDED BY: PROF.N.K.PRAJAPATI BE SEM 3 RD MECHANICAL SUB:MP I.
Shroff S.R. Rotary Institute Of Chemical Technology
1 HASMUKH GOSWAMI COLLEGE OF ENGINEERING & MANAGEMENT Academic Year :
PRESENTATION ON LATHE MACHINE
Machining Module 5: Lathe Setup and Operations. Parallel (Straight) Turnning Parallel turning is to move the cutting tool parallel to the longitudinal.
UNIT-II TURNING MACHINES
Unit 4 Machine Tools Machine Tools (Basic Elements, Working principle
TOPIC:CENTRE LATHE,CONSTRUCTIONAL FEATURES
Fixture.
The Centre lathe Damian Keenan.
Presentation on workshop practice
UNIT-II TURNING MACHINES
Session 4 Constructional features of centre lathe
UNIT-2 MACHINING.
UNIT-I SLOTTING MACHINES
Different Types of Lathe Operations And Alignment Test
MACH 118: Lathe & Mill 1 Lathe Workholding.
Taper and Taper Turning
MACH 118: Turning Between Centers
An Introduction to the Engine Lathe
Silver oak college of engineering and technology SUBJECT: MP-1 Prepared By: VRUSHANK JAY ANVESH MOHIT Guide: RAVIRAJ.
Introduction to the Lathe Machine
Lathe Practice.
Lathe Machines Types of Lathes: Center Lathe Engine Lathe Bench Lathe
Lathe Practice.
Facing & Center Drilling
MECHANICAL ENGINEERING
Lathe Practice.
Lathe Machines B.Tech III Year I semester R16
Presentation transcript:

Turning Objectives of machine tools (lathe) Turning is a machining process that used for machining, basically, round shapes (cylindrical, conical surfaces, and flat surfaces). These processes are usually performed by rotating the workpiece (turning) on a lathe. Objectives of machine tools (lathe) Hold the job Hold the cutter Produce a relative movement to enable the cutting tool to generate the required surface (job).

Elements of machine tool Structure Slides and tool structure Spindles and spindle bearing Machine tool drives Types of lathes The lathes can be classified into; General purpose machines: center lathe, turret lathes, facing lathes, and vertical lathes. High production machines; multiple tool lathes, semiautomatic lathes, and NC/CNC turning machines. Single purpose and specialized lathes.

Center lathes Center lathes is used for single operation work or for miscellaneous jobbing.

Turret Lathes It is adapted to mass production work, while the center lathe is adapted for a single operation work. The difference between the center lathe and the turret lathe are; The tailstock is replaced by a turret (hexagonal block), which can be may carry one or more tools. Tools may be set up in the proper sequence for the operation. Each station is provided with a feed stop or feed trip (help in repeatability). Combined cut can be made. Tool on the cross slide can be used in the same time that tools in the turret are cutting. Multiple cuts can be made from the same station at the same time. The labors cost required is less than that required in the center lathe.

Facing Lathes Vertical Lathes It is designed to machine shorter workpieces of great diameters (flywheel, pulleys and gears). The workpiece is clamped on a faceplate with strap clamps. Most of them do not have a tailstock. The heavy weights of the large workpieces (loads) restricted the applications of facing lathe. It replaced by vertical lathes. Vertical Lathes It is ranged from small size to large size for heavy workpieces (up to 25 m in diameter). The clamping plates, in it, are horizontal and rotate around the vertical axis. It is used in the heavy engineering industry for machining the parts of hydraulic turbines, generators, etc.

Turning Operations

Cutting and feed movements Generating machining These jobs are produced with three cutting motions; Rotary motion of workpiece about fixed axis (cutting motion, speed) with one of the following; Linear motion of tool parallel to the axis of rotation (feed motion) and depth of cut in the third direction (depth of cut). Cases are such as a, d, k, f, h, and l. Linear motion of tool at right angle to the axis of rotation (feed motion) and depth of cut in the third direction (depth of cut). Cases are such as e and j. Linear motion of tool at intermediate angle to the axis of rotation (feed motion) and depth of cut in the third direction (depth of cut). Cases are such as b and c.

Forming machining Rotary motion of workpiece about fixed axis (cutting motion, speed) with feed motion toward the workpiece without depth of cut. Cases are such as g, I, and k. To achieve a high degree of accuracy and surface finish; Prevent the work from deflection Constant feed rate to produce a uniform and good surface finish. The depth of cut must be controlled to a high degree of accuracy.

Work-holding methods: In the cylindrical work, all diameters should be concentric and all faced surfaces should be square to the cylinder axis. The best way is to perform as many operations as possible at one setting. The self –centering chuck (three jaws chuck); p98, fig 4-3. The jaws and slots are numbered and assembled in sequence or they will not centralize correctly. This method is not preferred for accurate setting or concentricity. The three-jaw, self-centring chuck: (a) construction; (b) external and internal jaws

The independent four jaws; p100, fig 4-4 The independent four jaws; p100, fig 4-4. It provides the facility of setting work off-center to produce eccentric workpiece. The concentric diameter(s) are produced first then adjust the chuck for eccentricity by a dial gauge. The dial gauge readings must vary by twice the amount of eccentricity required. the chuck is adjusted until the DTI maintains a constant reading whilst the chuck is revolved; The four-jaw chuck

The collet chuck, p100, fig 4-5. It provides for a certain diameter, high repeatability, too small griping length (it is possible to cut close to the collet), it is made of medium carbon steel and is hardened and spring tempered so that when unlocked it will spring open and release the work. To enable it to close on the work three or four slots are made. (c) push out type collet (a and b) draw in type collet

For hollow shafts a mandrel can be used, fig4-7 Holding work between centers. P104, fig 4-6. It used for solid work. It should have a center hole in each end. There are two centers, live center attaché to the headstock and dead center attach to the tail stock. Virtually exact repeatability of position. To drive the work catch plate with a driving pin is fitted in the spindle nose and a work carrier (driving dog) is attach to the work. The parallelism should be checked. For hollow shafts a mandrel can be used, fig4-7

External work supports; The faceplate; fig4-8 External work supports; Traveling support (steady) fig4-9 Fixed support (steady) fig4-10, used when the tailstock can not be used (the work is hollow at the end near the tailstock or that end is to be bored to size). The pads or rests are act as bearing and are usually made of brass.

Setting the tail stock off-center (adjusting the axis of rotation) Taper turning Setting the tail stock off-center (adjusting the axis of rotation) Offset distance Where; L is the full length of the workpiece D is the largest diameter of the workpiece d is the smallest diameter of the workpiece l is the length of the tapered surfaces.

Using the compound top slide (for any angle but the length of travel is limited and hand feed must be used), give limited accuracy. Calculate the inclination angle? Using form tool. What is the tool inclination angle?

Taper turning attachment, the lead screw of the cross slide is released, so the control of depth of cut is taken from the sliding block around the guide bar, which is inclined with the required angle.

The taper angle will be incorrect The taper will not be straight The effect of incorrect tool setting on taper turning; with low tool setting; The taper angle will be incorrect The taper will not be straight With 2 mm low, the error in the radius is 0.02 mm (p112&113) H R New r 20 2 21 20.9955 4 22 21.9911 6 23 22.9872 8 24 22.9835

Screw cutting in the lathe The form of the thread is coped from the tool shape. The tool should be ground to the correct shape (angle and nose radius and zero top rake angle). Use the screw cutting plate gauge to check the correct shape of the tool and to set it to the correct position with respect to the workpiece. Generating the thread helix; p116 Select of gear trains in the Screw cutting Driver Driven = Pitch of work Pitch of lead screw Use gears with no. of teeth between 20 and 120 and step 5 teeth.

Cutting Parameters 1- Depth of cut d =(Do –Df)/2. D.o.c is usually taken as 3-5 mm for rough turning and 0.8 to 1.6 mm for finish turning. 2- Cutting speed mm/min where V= 3.14 DN 3- feed per rev (f mm/rev) where feed rate fr = Nf Feed is usually taken as 0.3-1.5 mm for rough turning and 0.1 to 0.8 mm for finish turning. Time to cut =L/fr Volumetric rate of metal removal = vfd Each metal has an optimum speed v

Work length is 320mm holding length is 50 mm. It is required to turn a 90 mm. diameter and 250 mm. length bar to the shown dimension with speed = 90m/min, feed rate = 0.38 mm/rev. and depth of cut = 5mm. The approach and over travel = 3 mm. Choose the suitable method to hold this workpiece. Find the machining time required to machine this workpiece. All dimensions in mm. Notes; What does happen when; D.O.c =3 Work length is 320mm holding length is 50 mm.

Determine the number of teeth for screw cutting train to cut thread of pitch 0.7 mm given that the lathe leadscrew pitch is 4 mm and the available gears have 20 to 120 teeth with step of 5 teeth. Thread cut