Permutahedra and the Saneblidze-Umble Diagonal

Slides:



Advertisements
Similar presentations
This algorithm is used for dimension reduction. Input: a set of vectors {Xn є }, and dimension d,d
Advertisements

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M
Partial Differential Equations
B.Macukow 1 Lecture 12 Neural Networks. B.Macukow 2 Neural Networks for Matrix Algebra Problems.
Lecture 6 Matrix Operations and Gaussian Elimination for Solving Linear Systems Shang-Hua Teng.
Linear Transformations
4.I. Definition 4.II. Geometry of Determinants 4.III. Other Formulas Topics: Cramer’s Rule Speed of Calculating Determinants Projective Geometry Chapter.
Slides prepared by Rose Williams, Binghamton University Chapter 11 Recursion.
CS232.
6 1 Linear Transformations. 6 2 Hopfield Network Questions.
1 Matrix Addition, C = A + B Add corresponding elements of each matrix to form elements of result matrix. Given elements of A as a i,j and elements of.
CALCULUS – II Matrix Multiplication by Dr. Eman Saad & Dr. Shorouk Ossama.
Section 2.9 The Hill Cipher; Matrices
Lecture 7: Matrix-Vector Product; Matrix of a Linear Transformation; Matrix-Matrix Product Sections 2.1, 2.2.1,
Arithmetic Operations on Matrices. 1. Definition of Matrix 2. Column, Row and Square Matrix 3. Addition and Subtraction of Matrices 4. Multiplying Row.
Matrices Write and Augmented Matrix of a system of Linear Equations Write the system from the augmented matrix Solve Systems of Linear Equations using.
1 February 24 Matrices 3.2 Matrices; Row reduction Standard form of a set of linear equations: Chapter 3 Linear Algebra Matrix of coefficients: Augmented.
Square n-by-n Matrix.
8.1 Matrices and Systems of Equations. Let’s do another one: we’ll keep this one Now we’ll use the 2 equations we have with y and z to eliminate the y’s.
Topics to be covered: Produce all combinations and permutations of sets. Calculate the number of combinations and permutations of sets of m items taken.
Mathematics for Computer Graphics. Lecture Summary Matrices  Some fundamental operations Vectors  Some fundamental operations Geometric Primitives:
Recursion. Review  Recursive solutions, by definition, are built off solutions to sub-problems.  Many times, this will mean simply to compute f(n) by.
Allows us to represent, and quickly calculate, the number of different ways that a set of objects can be arranged. Ex: How many different ways can a coach.
Lesson 7.6 & 7.7 Inverses of a Square Matrix & Determinant.
10.4 Matrix Algebra 1.Matrix Notation 2.Sum/Difference of 2 matrices 3.Scalar multiple 4.Product of 2 matrices 5.Identity Matrix 6.Inverse of a matrix.
Chapter 5 Eigenvalues and Eigenvectors 大葉大學 資訊工程系 黃鈴玲 Linear Algebra.
2009/9 1 Matrices(§3.8)  A matrix is a rectangular array of objects (usually numbers).  An m  n (“m by n”) matrix has exactly m horizontal rows, and.
Discrete Mathematics 1 Kemal Akkaya DISCRETE MATHEMATICS Lecture 16 Dr. Kemal Akkaya Department of Computer Science.
Fall 2008Simple Parallel Algorithms1. Fall 2008Simple Parallel Algorithms2 Scalar Product of Two Vectors Let a = (a 1, a 2, …, a n ); b = (b 1, b 2, …,
March 11, 2005 Recursion (Implementation) Satish Dethe
Computational Geometry 2012/10/23. Computational Geometry A branch of computer science that studies algorithms for solving geometric problems Applications:
1 Section 5.3 Permutations and Combinations Permutations (order counts) A permutation of a set is an arrangement of the objects from a set. There are n!
Slide Copyright © 2009 Pearson Education, Inc. 7.4 Solving Systems of Equations by Using Matrices.
Unit #1 Linear Systems Fall Dr. Jehad Al Dallal.
Lecture XXVII. Orthonormal Bases and Projections Suppose that a set of vectors {x 1,…,x r } for a basis for some space S in R m space such that r  m.
Chapter 7: Systems of Equations and Inequalities; Matrices
Linear Algebraic Equations and Matrices
12-1 Organizing Data Using Matrices
Chapter - 12 GRAPH MATRICES AND APPLICATIONS.
Chapter 7 Matrix Mathematics
More Simple Recursive Problems
Spring Dr. Jehad Al Dallal
10.5 Inverses of Matrices and Matrix Equations
MATHEMATICS Matrix Algebra
MATHEMATICS Matrix Multiplication
Linear Algebraic Equations and Matrices
Advanced Algorithms Analysis and Design
Dr. Ameria Eldosoky Discrete mathematics
Properties Of the Quadratic Performance Surface
7.3 Matrices.
Unfolding Problem: A Machine Learning Approach
Linear Equations in Linear Algebra
Lecture 11 Matrices and Linear Algebra with MATLAB
1.3 Vector Equations.
Chapter 3 Linear Algebra
Recall Brute Force as a Problem Solving Technique
Matrix Multiplication
Chapter 7: Matrices and Systems of Equations and Inequalities
Coordinate Transformation in 3D Final Project Presentation
Basics of Linear Algebra
Multiplication of Matrices
A square matrix is a matrix with the same number of columns as rows.
컴퓨터 그래픽스를 위한 기하학적 기초 (Line Geometry for Computer Graphics)
Unfolding with system identification
1.8 Matrices.
Game Programming Algorithms and Techniques
1.8 Matrices.
Eigenvalues and Eigenvectors
3.5 Perform Basic Matrix Operations Algebra II.
3.7 Counting Techniques: Permutations
Presentation transcript:

Permutahedra and the Saneblidze-Umble Diagonal By Stephen Weaver Directed by Dr. Ron Umble

Computational Geometry the study of algorithms to solve problems in geometry

Permutahedra Geometric shapes based on permutations of the partitions of a set {1,2}  {3} Each permutation corresponds to a face of some permutahedron We use bar notation for convenience {3}  {1,2} = 3|12 The single partition {1,2,3,…,n} corresponds to the top dimensional face

Permutahedra The boundary of a face consists of adding a single bar in every possible way 1|2 2|1 12 Two faces are adjacent if their boundaries intersect 2|1|3 1|3|2 12|3 1|23 1|2|3

Permutahedra - Examples 1|2 2|1 12 1 P3 3|12 3|1|2 3|2|1 P4 13|2 23|1 123 1|3|2 2|3|1 1|23 2|13 1|2|3 12|3 2|1|3

Permutahedra - Examples 1|2 2|1 12 1 P3 3|12 3|1|2 3|2|1 P4 13|2 23|1 123 1|3|2 2|3|1 1|23 2|13 1|2|3 12|3 2|1|3

Permutahedra - Examples 1|2 2|1 12 1 P3 3|12 3|1|2 3|2|1 P4 13|2 23|1 123 1|3|2 2|3|1 1|23 2|13 1|2|3 12|3 2|1|3

Permutahedra - Examples 1|2 2|1 12 1 P3 3|12 3|1|2 3|2|1 P4 13|2 23|1 123 123|4 1|3|2 12|3|4 2|3|1 12|34 1|23 2|13 1|2|3 12|3 2|1|3

Diagonal Given a set S, Diagonal of S  S { (x,x) | x є S } S S

Diagonal on P2  P2 12  2|1 1|2  12 1|2  2|1 2|1  2|2 1|2  1|2 2|1  1|2

Step Matrix Example Reading a Step Matrix 5 6 4 7 8 1 9 2 3 1 2 3 4 14|2|3  4|123

Step Matrix Example Reading a Step Matrix 5 6 4 7 8 1 9 2 3 1 2 3 4 14|2|3

Step Matrix Example Reading a Step Matrix 5 6 4 7 8 1 9 2 3 1 2 3 4 14|2|3  4|123

Transforming a Step Matrix 1 3 1 3 2 5 2 5 4 4 1 3 1 2 2 3 4 5 4 5

S-U Diagonal on P3 1 1 2 1 3 1 2 2 1 2 3 1 3 2 2 3 3 3 1|2|3123 1|23  13|2 12|32|1 3 2|1323| 1 13|23|1 2 1233|2| 1 1 1 2 2 3 3 12|323|1 1|233|12

Calculating the S-U Diagonal Skip step matrix stage – Use permutations and strings One – to – one correspondence between permutations and step matrices

Calculating the S-U Diagonal Skip step matrix stage – Use permutations and strings One – to – one correspondence between permutations and step matrices 2 4132 1 3 4 A=4 B=4

Calculating the S-U Diagonal Skip step matrix stage – Use permutations and strings One – to – one correspondence between permutations and step matrices 2 4132 1 3 4 A=41 B=4|1

Calculating the S-U Diagonal Skip step matrix stage – Use permutations and strings One – to – one correspondence between permutations and step matrices 2 4132 1 3 4 A=41|3 B=4|13

Calculating the S-U Diagonal Skip step matrix stage – Use permutations and strings One – to – one correspondence between permutations and step matrices 2 4132 1 3 4 A=41|32 B=4|13|2 14|23  4|13|2

S-U Diagonal Acts multiplicatively w.r.t. the bar operation (12|34) = (12) | (34) = (1|212 + 122|1) | (3|434 + 344|3) = (1|2|3|412|34) + (1|2|3412|4|3) + (12|3|42|1|34) + (12|342|1|4|3)

Generic Diagonal abc Three Element 2|134 Diagonal a|b|c  abc a|bc  ac|b ab|c  b|ac b|ac  bc|a ac|b  c|ab abc  c|b|a ab|c  bc|a a|bc  c|ab (2|134) = (2)| (134) = 2|1|3|4  2|134 2|1|34  2|14|3 2|13|4  2|3|14 2|3|14  2|34|1 2|14|3  2|4|13 2|134  2|4|3|1 2|13|4  2|34|1 2|1|34  2|4|13

Associativity (ab)c = a(bc) m( m(a,b) , c ) = m( a , m(b,c) ) m(m x id)(a,b,c) = m(id x m)(a,b,c) S-U Diagonal takes one input and produces two outputs – “comultiplication” (  id) (X) = (id  ) (X) ? Is  “coassociative?”

Not Coassociative - Example (x1) (123) + (1x) (123) = 2|1|32|1323|1 + 1|2|32|1323|1 +1|3|213|23|12 + 1|2|313|23|12 +12|32|133|2|1 + 12|32|132|3|1 +12|32|1|323|1 + 12|32|3|123|1 +1|2313|23|2|1 + 1|2313|23|2|1 +1|231|3|23|12 + 1|233|1|23|12 (mod 2) This measures the error from being coassociative.

Homotopy Coassociativity Let Vi be the Z2-vector space whose basis is the i dimensional faces of Pn Let  : Vi  Vi-1 be the boundary operation Let H : Vi  (V*  V*  V*) i+1 such that H+H=(id) + (id) H acts multiplicatively with respect to bar H(13|24) = H(13) | H(24)

Homotopy Function H(1) = 0 H(12) = 0 H(123) = 12|3x2|13x23|1 + 1|23x13|2x3|12 H(1234) = ?

Calculating H(1234) H = (id) + (id) + H X = H(1234) є (V*  V*  V*)4 (X) = [(id) + (id) + H](1234)

Calculating H(1234) H = (id) + (id) + H X = H(1234) є (V*  V*  V*)4 (X) = [(id) + (id) + H](1234) (V*  V*  V*)4 (V*  V*  V*)3

Calculating H(1234) H = (id) + (id) + H X = H(1234) є (V*  V*  V*)4 (X) = [(id) + (id) + H](1234) (V*  V*  V*)4 120,960 x 73,729 (V*  V*  V*)3

One Solution for H(1234) H(1234) = 12|34x24|13x4|2|3|1 + 12|34x24|13x4|3|2|1 + 123|4x3|24|1x34|2|1 + 123|4x3|2|14x34|2|1 + 123|4x3|2|14x3|24|1 + 124|3x4|2|13x4|23|1 + 12|34x24|1|3x4|2|13 + 12|34x24|3|1x4|23|1 + 12|34x2|14|3x24|3|1 + 12|34x2|14|3x2|4|13 + 12|34x2|14|3x4|23|1 + 12|34x2|4|13x4|23|1 + 13|24x34|1|2x4|3|12 + 13|24x3|14|2x34|2|1 + 13|24x3|14|2x3|4|12 + 14|23x4|13|2x4|3|12 + 1|234x14|3|2x4|13|2 + 1|234x14|3|2x4|3|12 + 1|234x4|13|2x4|3|12 + 23|14x3|24|1x34|2|1 + 2|134x24|3|1x4|23|1 + 12|34x2|1|4|3x24|13 + 12|34x2|4|1|3x24|13 + 13|24x3|1|4|2x34|12 + 13|24x3|4|1|2x34|12 + 12|3|4x23|14x34|2|1 + 12|3|4x23|14x3|24|1 + 12|3|4x2|134x24|3|1 + 12|3|4x2|134x4|23|1 + 12|4|3x24|13x4|23|1 + 13|2|4x3|124x34|2|1 + 1|23|4x134|2x4|3|12 + 1|23|4x13|24x34|1|2 + 1|23|4x13|24x3|14|2 + 1|23|4x13|24x4|3|12 + 1|23|4x3|124x34|2|1 + 1|24|3x14|23x4|13|2 + 1|24|3x14|23x4|3|12 + 1|2|34x124|3x4|23|1 + 1|2|34x124|3x4|2|13 + 1|2|34x14|23x4|13|2 + 1|2|34x14|23x4|3|12 + 1|2|34x24|13x4|23|1 + 1|3|24x134|2x4|3|12 + 2|13|4x23|14x34|2|1 + 2|13|4x23|14x3|24|1 + 2|14|3x24|13x4|23|1 + 12|3|4x2|13|4x234|1 + 12|3|4x2|13|4x23|14 + 12|3|4x2|1|34x24|13 + 12|3|4x2|3|14x234|1 + 12|4|3x2|14|3x24|13 + 13|2|4x3|1|24x34|12 + 13|4|2x3|14|2x34|12 + 1|23|4x13|2|4x34|12 + 1|23|4x13|2|4x3|124 + 1|23|4x1|3|24x134|2 + 1|23|4x3|14|2x34|12 + 1|23|4x3|1|24x34|12 + 1|24|3x14|2|3x4|123 + 1|2|34x14|2|3x4|123 + 1|2|34x1|24|3x14|23 + 1|2|34x1|24|3x4|123 + 1|2|34x2|14|3x24|13 + 1|3|24x3|14|2x34|12 + 2|13|4x2|3|14x234|1

Future Work Finding an H with minimal number of terms Modifying / Parallelizing the row reduction algorithm to calculate H for n > 4 Picture on second page found at: http://www.lightstorm3d.de/portfolio/back_to_gaya/stills/programming/collisionDeformer.jpg Cross  Partial  Union  Delta 