6.1 Right Triangle Trigonometry

Slides:



Advertisements
Similar presentations
Trigonometry Right Angled Triangle. Hypotenuse [H]
Advertisements

The Tangent Ratio CHAPTER 7 RIGHT TRIANGLE TRIGONOMETRY.
Right Triangle Trigonometry
Right Triangle Trigonometry Day 1. Pythagorean Theorem Recall that a right triangle has a 90° angle as one of its angles. The side that is opposite the.
9.1 Use Trigonometry with Right Triangles
Trigonometry Chapters Theorem.
Chapter 3 Trigonometric Functions of Angles Section 3.2 Trigonometry of Right Triangles.
Warm Up for Section 1.2 Simplify: (1). (2). (3). There are 10 boys and 12 girls in a Math 2 class. Write the ratio of the number of girls to the number.
Lesson 1: Primary Trigonometric Ratios
Trigonometry. Logarithm vs Natural Logarithm Logarithm is an inverse to an exponent log 3 9 = 2 Natural logarithm has a special base or e which equals.
Notes - Trigonometry *I can solve right triangles in real world situations using sine, cosine and tangent. *I can solve right triangles in real world situations.
Geometry Notes Lesson 5.3A – Trigonometry T.2.G.6 Use trigonometric ratios (sine, cosine, tangent) to determine lengths of sides and measures of angles.
Unit 1 – Physics Math Algebra, Geometry and Trig..
Section 7.2 Trigonometric Functions of Acute Angles.
Warm-Up 3/24-25 What are three basic trigonometric functions and the their ratios? Sine: sin  Cosine: cos  Tangent: tan 
Table of Contents 5. Right Triangle Trigonometry
Right Triangles & Trigonometry OBJECTIVES: Using Geometric mean Pythagorean Theorem 45°- 45°- 90° and 30°-60°-90° rt. Δ’s trig in solving Δ’s.
7-3A Trigonometric Ratios What is trigonometry? What is sine? What is cosine? What is tangent?
7.2 Finding a Missing Side of a Triangle using Trigonometry
TRIGONOMETRY BASIC TRIANGLE STUDY: RATIOS: -SINE -COSINE -TANGENT -ANGLES / SIDES SINE LAW: AREA OF A TRIANGLE: - GENERAL -TRIGONOMETRY -HERO’S.
Chapter 8.3: Trigonometric Ratios. Introduction Trigonometry is a huge branch of Mathematics. In Geometry, we touch on a small portion. Called the “Trigonometric.
Trigonometric Ratios and Their Inverses
The Right Triangle Right Triangle Pythagorean Theorem
World 5-1 Trigonometric Ratios. Recall that in the past finding an unknown side of a right triangle required the use of Pythagoras theorem. By using trig.
Chapter : Trigonometry Lesson 3: Finding the Angles.
Trigonometry Chapters Theorem.
Lesson 46 Finding trigonometric functions and their reciprocals.
Find the missing measures (go in alphabetical order) 60° 30° 10 y z Warm – up 3 45  y 60  30  x 45 
Warm up. Right Triangle Trigonometry Objective To learn the trigonometric functions and how they apply to a right triangle.
9-2 Sine and Cosine Ratios. There are two more ratios in trigonometry that are very useful when determining the length of a side or the measure of an.
List all properties you remember about triangles, especially the trig ratios.
Splash Screen. Then/Now You used the Pythagorean Theorem to find missing lengths in right triangles. Find trigonometric ratios using right triangles.
Date: Topic: Trigonometric Ratios (9.5). Sides and Angles x The hypotenuse is always the longest side of the right triangle and is across from the right.
13.1 Right Triangle Trigonometry ©2002 by R. Villar All Rights Reserved.
Trigonometry Lesley Soar Valley College Objective: To use trigonometric ratios to find sides and angles in right-angled triangles. The Trigonometric.
13.1 Right Triangle Trigonometry. Definition  A right triangle with acute angle θ, has three sides referenced by angle θ. These sides are opposite θ,
Trigonometry of Right Triangles
TRIGONOMETRY.
Trigonometric Functions
A triangle in which one angle is a right angle is called a right triangle. The side opposite the right angle is called the hypotenuse, and the remaining.
Trigonometry Review.
Trigonometric Functions
Use of Sine, Cosine and Tangent
7-6 Sine and Cosine of Trigonometry
…there are three trig ratios
Agenda: Warmup Notes/practice – sin/cos/tan Core Assessment 1 Monday
CHAPTER 4 TRIGONOMETRIC FUNCTIONS
Trigonometry Obj: I can to use trigonometry to find unknown sides and unknown angles in a triangle. Trigonometry is concerned with the connection between.
You will need a calculator and high lighter!
UNIT QUESTION: What patterns can I find in right triangles?
CHAPTER 8 Right Triangles.
…there are three trig ratios
Trigonometry Review.
Aim: How do we review concepts of trigonometry?
Trigonometry Ratios in Right Triangles
Test Review.
When problem solving, you may be asked to find a missing side of a right triangle. You also may be asked to find a missing angle. If you look at your.
WELCOME BACK TO OMHS & WELCOME TO HONORS TRIGONOMETRY
Right Triangles Unit 4 Vocabulary.
Right Triangle 3 Tangent, Sine and Cosine
Section 1.2 Trigonometric Ratios.
Review these 1.) cos-1 √3/ ) sin-1-√2/2 3.) tan -1 -√ ) cos-1 -1/2
Review: Find the missing measures. Write all answers in radical form.
Right Triangle Trigonometry
Find the missing measures. Write all answers in radical form.
Right Triangle Trigonometry
Trigonometry for Angle
Junior Cert TRIGONOMETRY.
Introduction to Trigonometric Functions
…there are three trig ratios
Presentation transcript:

6.1 Right Triangle Trigonometry

Pythagorean Theorem Recall that a right triangle has a 90° angle as one of its angles. The side that is opposite the 90° angle is called the hypotenuse. The theorem due to Pythagoras says that the square of the hypotenuse is equal to the sum of the squares of the legs. c2 = a2 + b2 a c b

Introduction to Trigonometry In this section we define the three basic trigonometric ratios, sine, cosine and tangent. opp is the side opposite angle A adj is the side adjacent to angle A hyp is the hypotenuse of the right triangle hyp opp adj A

Definitions Sine is abbreviated sin, cosine is abbreviated cos and tangent is abbreviated tan. The sin(A) = opp/hyp The cos(A) = adj/hyp The tan(A) = opp/adj Just remember sohcahtoa! Sin Opp Hyp Cos Adj Hyp Tan Opp Adj

Special triangles 30 – 60 – 90 degree triangle. Consider an equilateral triangle with side lengths 2. Recall the measure of each angle is 60°. Chopping the triangle in half gives the 30 – 60 – 90 degree traingle. 30° 2 2 √3 2 2 1 60°

30° – 60° – 90° Now we can define the sine cosine and tangent of 30° and 60°. sin(60°)=√3 / 2; cos(60°) = ½; tan(60°) = √3 sin(30°) = ½ ; cos(30°) = √3 / 2; tan(30°) = 1/√3

45° – 45° – 90° Consider a right triangle in which the lengths of each leg are 1. This implies the hypotenuse is √2. 45° sin(45°) = 1/√2 √2 cos(45°) = 1/√2 1 tan(45°) = 1 1 45°

Example Find the missing side lengths and angles. sin(60°)=y/10 10 x thus y=10sin(60°) A y

Inverse Trig Functions What if you know all the sides of a right triangle but you don’t know the other 2 angle measures. How could you find these angle measures? What you need is the inverse trigonometric functions. Think of the angle measure as a present. When you take the sine, cosine, or tangent of that angle, it is similar to wrapping your present. The inverse trig functions give you the ability to unwrap your present and to find the value of the angle in question.

Notation A=sin-1(z) is read as the inverse sine of A. Never ever think of the -1 as an exponent. It may look like an exponent and thus you might think it is 1/sin(z), this is not true. (We refer to 1/sin(z) as the cosecant of z) A=cos-1(z) is read as the inverse cosine of A. A=tan-1(z) is read as the inverse tangent of A.

Inverse Trig definitions Referring to the right triangle from the introduction slide. The inverse trig functions are defined as follows: A=sin-1(opp/hyp) A=cos-1(adj/hyp) A=tan-1(opp/adj)

Example using inverse trig functions Find the angles A and B given the following right triangle. Find angle A. Use an inverse trig function to find A. For instance A=sin-1(6/10)=36.9°. Then B = 180° - 90° - 36.9° = 53.1°. B 6 10 8 A