M2 M1 Vbb Vin CL M4 M3 Vyy Vxx VDD VDD Vo<Vxx+|Vt3| flip up-down

Slides:



Advertisements
Similar presentations
Ideal Operational Amplifier analysis and design
Advertisements

Differential Amplifiers
DIFFERENTIAL AMPLIFIERS. DIFFERENTIAL AMPLIFIER 1.VERY HIGH INPUT IMPEDENCE 2.VERY HIGH BANDWIDTH 3.DIFFERENTIAL INPUT 4.DC DIFFERENTIAL INPUT ACCEPTED.
Operational Amplifier (2)
1 EE 501 Fall 2009 Design Project 1 Fully differential multi-stage CMOS Op Amp with Common Mode Feedback and Compensation for high GB.
W3,4: Operational Amplifier Design Insoo Kim, Jaehyun Lim, Kyungtae Kang Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The.
OpAmp (OTA) Design The design process involves two distinct activities: Architecture Design –Find an architecture already available and adapt it to present.
CMOS AMPLIFIERS Simple Inverting Amplifier Differential Amplifiers Cascode Amplifier Output Amplifiers Summary.
CMOS AMPLIFIERS Simple Inverting Amplifier Differential Amplifiers Cascode Amplifier Output Amplifiers Summary.
2. CMOS Op-amp설계 (1).
TECHNIQUES OF DC CIRCUIT ANALYSIS: SKEE 1023
UNIT -V IC MOSFET Amplifiers.
Basic Block Diagram of Op-Amp
Common Base and Common Collector Amplifiers
ECE 3302 Fundamentals of Electrical Engineering
Recall Lecture 17 MOSFET DC Analysis
HW#10 will be posted tonight
Recall Lecture 17 MOSFET DC Analysis
Lecture 13 High-Gain Differential Amplifier Design
Pass Transistor Logic We want to transfer a logic 1 using the circuit below. Assume Vin = VDD, Vg makes a transition from 0V to VDD and at t=0 Vx = 0V.
In The Name of God Design of A Sample And Hold Circuit Based on The Switched Op-Amp Techniques M.Rashtian: Faculty of Civil Aviation Technology College.
Design: architecture selection plus biasing/sizing
Voltage doubler for gate overdrive
TECHNIQUES OF DC CIRCUIT ANALYSIS: SKEE 1023
VDD M3 M1 Vbb Vin CL Rb Vo VDD Vo Vb3
CASCODE AMPLIFIER.
Basic Amplifiers and Differential Amplifier
Fully differential op amps
vs vb cc VDD M9 M12 M11 Iref M1 M2 vo vin- vin+= voQ = vo CL M3 M4 M13
Operational Amplifier Design
Last time Small signal DC analysis Goal: Mainly use CS as example
CMOS Analog Design Using All-Region MOSFET Modeling
Last time Large signal DC analysis Current mirror example
More DAC architectures
DAC architectures.
vs vb cc VDD VDD VDD M9 M12 M11 vo Iref M1 M2 vin vin+= voQ CL vf=vin
MULTISTAGE AMPLIFIERS
OpAmp (OTA) Design The design process involves two distinct activities: Architecture Design Find an architecture already available and adapt it to present.
Input common mode range drop
HW#10 will be posted tonight
cc cc vbp vbp vbn VDD VDD VDD VDD VDD M16 M4 M3 M4 M13 Rbp vo+ CL vo-
cc cc vbp vbp vbn VDD VDD VDD VDD VDD M16 M14 M3 M4 M13 Rbp vo+ CL vo-
M2 M1 Vbb Vin CL M4 M3 Vyy Vxx VDD VDD Vo<Vxx+|Vt3| flip up-down
VDD VDD Vo<VG6+|Vt6| =VDD - |Vtp| - 2Veff M7 M5 M8 M6 vo
For a differential amplifer: vin+=vic+vid/2, vin-=vic-vid/2
Lecture 13 High-Gain Differential Amplifier Design
vs vin- vin+ vbp vbn vbn vbb vbb VDD VDD M9 M12 M1 M2 v- v+ Iref M3 M4
Last time Reviewed 4 devices in CMOS Transistors: main device
Miller equivalent circuit
Common mode feedback for fully differential amplifiers
Basic current mirror Small signal: Rin = 1/(gm1+gds1)  1/gm1
DAC architectures.
M2 M1 Vbb Vin CL M4 M3 Vyy Vxx VDD VDD Vo<Vxx+|Vt3| flip up-down
Recall Lecture 17 MOSFET DC Analysis
Single-Stage Amplifiers
Operational Amplifier (Op-Amp)-μA741
Types of Amplifiers Common source, input pairs, are transconductance
Input common mode range
VDD M2 M1 Vbb Vin CL RL Vo VDD Vo Vb2
Common mode feedback for fully differential amplifiers
Common source output stage:
Differential Amplifier
vs vb cc VDD VDD VDD M9 M12 M11 vo Iref M1 M2 vin vin+= voQ CL vf=vin
Complementary input stage with rail-to-rail Vicmr and constant gm
Folded cascode stage: summing current and convert to voltage
Rail-to-rail Input Stage
Differential Amplifier
VDD Vin+ CL Vin- Vb3 folded cascode amp Vb2 Vb1 Vb4 Vb5.
CP-406 VLSI System Design CMOS Transistor Theory
10k 20k Vin Vout H3 What is the gain?
Presentation transcript:

M2 M1 Vbb Vin CL M4 M3 Vyy Vxx VDD VDD Vo<Vxx+|Vt3| flip up-down for source Rb M2 Vbb CL M1 Vin connecting D1 to S2 cascoding Vo> Vbb-Vt2 ro = rop||ron, Av=-gm1*ro

VDD VDD flip left-right to get this differential telescopic cascoded amplifier M7 M5 Vyy Vxx Vo<Vxx+|Vt3| M8 M6 vo- vo+ CL M3 M4 Vbb CL M1 M2 vin+ vin- Vs Vo> Vbb-Vt2 Tail current to change gnd to virtual gnd

Let vin+ = Vic + ½ vid, vin- = Vic - ½ vid The cross source: Vs = Vic – VGS1Q. Left half circuit same as two slides back, but with vin = ½ vid. So vo- = - gm1ro-(½ vid), where ro- = ro5,7||ro1,3. Similarly, vo+ = - gm1ro+(-½ vid), where ro+ = ro6,8||ro2,4. Hence: vod = gm1rovid Av = vod/vid = gm1ro where ro = ro- = ro+

ICMR M3 M4 Vbb What is Vicmax? VD1 = Vbb-Vt3-Veff3 For M1 in saturation, need VD1>VG1Q–Vt1 =Vic–Vt1. So, Vic<Vbb-Vt3-Veff3+Vt1 Vicmax=Vbb-Veff3 What is Vicmin? Vs>Veff9 for M9 in saturation. Vic>Veff9+Veff1+Vt1 Vicmin=Veff9+Veff1+Vt1 M1 M2 vin+ vin- Is M1 M2 vin+ vin- M9

VDD VDD Diode connection to turn diff out to single-ended output  M7 M5 M8 Vo<VG6+|Vt6| M6 vo Same ICMR. But Vo range is different. VG6=VDD-2Vtp-2Veff M3 M4 CL Vbb M1 M2 vin+ vin- Vo>Vbb-Vt2 Same Av, ro

VDD VDD Vo Vo Folded cascode

VDD Vin CL Vbb flip up-down for I sources VDD M1 Vin CL M2 Vbb connecting n-D to p-S

VDD VDD folded cascode amp Vbb Vin+ Vin- CL

D1 connects to G2, two stages VDD VDD VDD VDD two stage CS amplifier CS amplifier with a source follower buffer

VDD VDD VDD Vx Vx Same as above, only T2 is pMOS Connecting S1 to D2 makes ro really small buffer or output stage

Frequency dependent analysis By including the effects of capacitors and by using s-domain impedances

MOST model: saturation Chapter 4 Figure 11 Cgs  2/3 CoxWL, Cgd = CoxWLov= Cgd0W Cdb = CjAD+CjswPD, Csb tricky, mostly short

Non-symmetric operation  Csb > Cdb Chapter 4 Figure 12 Non-symmetric operation  Csb > Cdb If S-B together, Csb is shorted. Easy for PMOS, but for NMOS, true only if S=gnd.

1:M Voutmax Vin I1Q=I2Q= Pcs= Ptot= Voutmin

For Zo, set vin=0; Yo=gds1+gds2+s(C2+Cgd1) KCL at vout: gm1vin-sCgd1 +Yovout=0 Av(s) = (sCgd1-gm1)/Yo C2=CL+Cdb1 +Cdb2 1/R2= gds1+gds2

Av(0) = p1 = z1 = BW = |p1| = GBW = Av(0)* BW= SR = max dvout/dt =