MATEMÁTICAS I MEDIO PROGRAMA EMPRENDER PREUNIVERSITARIO ALUMNOS UC

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Advanced Piloting Cruise Plot.
1
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
We need a common denominator to add these fractions.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
My Alphabet Book abcdefghijklm nopqrstuvwxyz.
Multiplying binomials You will have 20 seconds to answer each of the following multiplication problems. If you get hung up, go to the next problem when.
0 - 0.
ALGEBRAIC EXPRESSIONS
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
MULTIPLYING MONOMIALS TIMES POLYNOMIALS (DISTRIBUTIVE PROPERTY)
MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
FACTORING Think Distributive property backwards Work down, Show all steps ax + ay = a(x + y)
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Year 6 mental test 5 second questions
Year 6 mental test 10 second questions
Around the World AdditionSubtraction MultiplicationDivision AdditionSubtraction MultiplicationDivision.
C1 Sequences and series. Write down the first 4 terms of the sequence u n+1 =u n +6, u 1 =6 6, 12, 18, 24.
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Break Time Remaining 10:00.
Division- the bus stop method
© Richard A. Medeiros 2004 x y Function Machine Function Machine next.
PP Test Review Sections 6-1 to 6-6
ABC Technology Project
Bellwork Do the following problem on a ½ sheet of paper and turn in.
1 Undirected Breadth First Search F A BCG DE H 2 F A BCG DE H Queue: A get Undiscovered Fringe Finished Active 0 distance from A visit(A)
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
VOORBLAD.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Squares and Square Root WALK. Solve each problem REVIEW:
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
© 2012 National Heart Foundation of Australia. Slide 2.
Adding Up In Chunks.
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
Chapter 5 Test Review Sections 5-1 through 5-4.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Addition 1’s to 20.
25 seconds left…...
Januar MDMDFSSMDMDFSSS
Week 1.
Analyzing Genes and Genomes
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
Physics for Scientists & Engineers, 3rd Edition
Energy Generation in Mitochondria and Chlorplasts
Presentation transcript:

MATEMÁTICAS I MEDIO PROGRAMA EMPRENDER PREUNIVERSITARIO ALUMNOS UC PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE MATEMÁTICAS I MEDIO Santiago,08 de junio del 2013

El lenguaje algebraico 1. la mitad de un número A) x/2 B) 2 · x C) x²

El lenguaje algebraico 2. el doble de un número más tres A) x/2 + 3 B) 2 · (x + 3) C) 2x + 3

El lenguaje algebraico 3. el triple de un número menos cuatro A) 3 · 4 - x B) 3x - 4 C) x - 3 · 4

El lenguaje algebraico 4. la mitad del cubo de un número A) x3/2 B) 3/2 · x C) 3 · x /2

El lenguaje algebraico 5. siete menos un número A) 7 - 3 B) 7 - x C) x - 7

El lenguaje algebraico 6. el doble de la suma de dos números A) m + n · 2 B) 2 · m + n C) 2 · (m + n)

El lenguaje algebraico 7. la edad de una persona hace cinco años A) x - 5 B) 32 - 5 C) 5 - x

El lenguaje algebraico 8. el cuadrado más el triple de un número A) x2 + 3 · x B) 32 + 3 · x C) x + 32

El lenguaje algebraico 9. la quinta parte del triple de un número A) x/3 · 5 B) 3 · 5 /x C) 3 ·x / 5

El lenguaje algebraico 10. el triple de la suma de tres números A) a + b + c · 3 B) 3 + a + b + c C) 3 · (a + b + c)

El lenguaje algebraico 7a - 8b + 5c - 7a + 5a - 6b - 8a + 12b = 35x + 26y - 40x - 25y + 16x - 12y = -3a - 2b + 5c 11x – 11y

El lenguaje algebraico 24a - 16b + 3c - 8b + 7a + 5c + 23b + 14a- 7c - 16a - 2c = 3m - 7n + 5m - 7n + 5n + 3n - 8p - 5n + 8p = 29a – b – c 8m – 11n

El lenguaje algebraico 4p - 7q + 5p - 12p - 11q + 8p - 11q + 12r + p + 5r = 2a2 + 3b2 - 5a2 - 12 b2 - 7a2 + 6b2 - 8a2 - 5 b2 = 6p – 29q + 17r -18a2– 8b2

El lenguaje algebraico 7a - 1,8b + 5c - 7,2a + 5a - 6,1b - 8a + 12b = 8a + 5,2b - 7,1a + 6,4b + 9a - 4,3b + 7b - 3a = -3,2a + 4,1b + 5c 6,9a + 14,3b

El lenguaje algebraico 5a - 3b + c + ( 4a - 5b - c ) = 3a + ( a + 7b - 4c ) - ( 3a + 5b - 3c) - ( b - c ) = 9a - 8b 1a – 1b

El lenguaje algebraico 8x - ( 15y + 16z - 12x ) - ( -13x + 20y ) - ( x + y + z ) = 9x + 13 y - 9z - 7x - { -y + 2z - ( 5x - 9y + 5z) - 3z } = 32x – 36y - 17z -3x + 21y -15z

El lenguaje algebraico Si P = x2 + 3x – 2 y Q = 2x2 – 5x + 7, obtener: P + Q; P – Q; Q – P. (x2 + 3x – 2) + (2x2 – 5x + 7) (x2 + 3x – 2) - (2x2 – 5x + 7) (2x2 – 5x + 7) - (x2 + 3x – 2)

El lenguaje algebraico Si P = x3 – 5x2 – 1; Q = 2x2 – 7x + 3 y R = 3x3 – 2x + 2, obtener: P + Q – R; P – (Q – R) Si y , obtener: P + Q P – Q.

Productos algebraicos 5x · 4x · -2x = 15x3y2z · 4xy2z · 3x2yz2 = -4x2y2 · -2x4y2 · 3x5y3 = –18pq3· -3p2q =

Productos algebraicos z3n+2 · 3zn-2 = y2p-1 · y6 = 6 y2 · 12y = –19m3n · -6m2n3 =

Productos algebraicos 8(2x + 3y – 4z) = 2a(4a + 2a2b + 3a2c) = –3ab(a2 - 2ab + b2) = 5(2x – 3y + 2z) + 3(5y – 3x – 2z) =

Productos algebraicos 8a(3a - 5y – 2z) – 6y(4a - 6y + 3z) = 10 – 6(x – 5y) + 2(3x – 5 + 14y) = (a + b)(a – b) = (a + b)(a – 2b) + (a + b)(a + b) =

Productos algebraicos (x - 1)(x3 + x2 + x + 1) = 2(x + 2)(x + 1) = 4(a + 4)(a – 2) = (x + 4)(x + 3)(x + 2) =

Productos algebraicos (2x – y + 3z)(4x + 2y – z) = 8 – a2(10a + 3b) – [9 – 2(14a - 7b) - 4(3a - 9b)] = (x – y)(x3 + x2y + xy2 + y3) = (7a – 2b) – [2(3a - c) – 3(2b - 3c)] =

Productos algebraicos 2 – x[7x – {9x – 3(3 + 6x)}] (2a – b)[5b – 4(a + 2b) + (a - 4b)] 44x + 2y{48y – 4x2(6z + 3y – 4x) + 4z} – 2x2y{4x – 8y + 2z(4x + y)} =

Productos algebraicos a(a + b)(a – 3b) – a(a – b)(a + b) – (a + b)(a + b) + (a + b + 1)(a + b + 1) – 2(a + b) = (a4 + a3b + a2b2 + ab3 + b4)(a4 – a3b + a2b2 – ab3 + b4)(a2 – b2) =