X. I. Gu, P. E. Palacio-Mancheno, D. J. Leong, Y. A. Borisov, E

Slides:



Advertisements
Similar presentations
Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT  Danika L.
Advertisements

Knee Joint and Ligaments
Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.
B. J. Kim, D. -W. Kim, S. H. Kim, J. H. Cho, H. J. Lee, D. Y. Park, S
E. Music, K. Futrega, M.R. Doran  Osteoarthritis and Cartilage 
T1ρ relaxation time of the meniscus and its relationship with T1ρ of adjacent cartilage in knees with acute ACL injuries at 3T  R.I. Bolbos, Ph.D., T.M.
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
J. A. Waung, S. A. Maynard, S. Gopal, A. Gogakos, J. G. Logan, G. R
Loss of Vhl in cartilage accelerated the progression of age-associated and surgically induced murine osteoarthritis  T. Weng, Y. Xie, L. Yi, J. Huang,
Phase-sensitive X-ray imaging of synovial joints
M. Siebelt, A. E. van der Windt, H. C. Groen, M. Sandker, J. H
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
High-resolution MRI and micro-CT in an ex vivo rabbit anterior cruciate ligament transection model of osteoarthritis  Danika L. Batiste, B.Sc, Alexandra.
Contrast-enhanced CT facilitates rapid, non-destructive assessment of cartilage and bone properties of the human metacarpal  B.A. Lakin, D.J. Ellis, J.S.
An in vivo cross-linkable hyaluronan gel with inherent anti-inflammatory properties reduces OA cartilage destruction in female mice subjected to cruciate.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in sheep and goats  C.B. Little, M.M. Smith, M.A.
ADAMTS5−/− mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage.
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Study of subchondral bone adaptations in a rodent surgical model of OA using in vivo micro-computed tomography  D.D. McErlain, M.Sc., C.T.G. Appleton,
Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone  M.R. McCann, C. Yeung, M.A. Pest, A. Ratneswaran,
Cartilage and bone changes during development of post-traumatic osteoarthritis in selected LGXSM recombinant inbred mice  S. Hashimoto, M.F. Rai, K.L.
Low magnitude high frequency vibration accelerated cartilage degeneration but improved epiphyseal bone formation in anterior cruciate ligament transect.
Development and reliability of a multi-modality scoring system for evaluation of disease progression in pre-clinical models of osteoarthritis: celecoxib.
Acute mobilization and migration of bone marrow-derived stem cells following anterior cruciate ligament rupture  T. Maerz, M. Fleischer, M.D. Newton,
Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis 
Knee joint ultrasonography of the ACLT rabbit experimental model of osteoarthritis: relevance and effectiveness in detecting meniscal lesions  C. Boulocher,
Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT  Danika L.
Quantitative assessment of articular cartilage morphology via EPIC-μCT
The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse  S.S. Glasson, B.V.Sc., T.J. Blanchet, B.S., E.A.
Structural correlates of pain in joints with osteoarthritis
J. W. MacKay, P. J. Murray, B. Kasmai, G. Johnson, S. T. Donell, A. P
Effects of ACL interference screws on articular cartilage volume and thickness measurements with 1.5 T and 3 T MRI  M.E. Bowers, B.S., G.A. Tung, M.D.,
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.
Articular cartilage degeneration following anterior cruciate ligament injury: a comparison of surgical transection and noninvasive rupture as preclinical.
Potential mechanism of alendronate inhibition of osteophyte formation in the rat model of post-traumatic osteoarthritis: evaluation of elemental strontium.
Metabolic enrichment of omega-3 polyunsaturated fatty acids does not reduce the onset of idiopathic knee osteoarthritis in mice  A. Cai, E. Hutchison,
Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-μCT  L. Xie, A.S.P. Lin, R.E. Guldberg,
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis  A.J. Ramme, M. Lendhey, J.G.
Dietary fatty acids differentially affect the development of injury-induced osteoarthritis with diet-induced obesity in mice  C.-L. Wu, D. Jain, D. Little,
P. -H. Tsai, M. -C. Chou, H. -S. Lee, C. -H. Lee, H. -W. Chung, Y. -C
Radiofrequency (RF) coil impacts the value and reproducibility of cartilage spin–spin (T2) relaxation time measurements  B.J. Dardzinski, E. Schneider 
Subchondral and epiphyseal bone remodeling following surgical transection and noninvasive rupture of the anterior cruciate ligament as models of post-traumatic.
Preclinical investigation of the development of osteoarthritis-like degeneration in a rat trauma model using micro-computed tomography  T.H. Steiner,
Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change  Y. Chen,
Relationships between in vivo dynamic knee joint loading, static alignment and tibial subchondral bone microarchitecture in end-stage knee osteoarthritis 
Therapeutic effects of an anti-ADAMTS-5 antibody on joint damage and mechanical allodynia in a murine model of osteoarthritis  R.E. Miller, P.B. Tran,
M. R. Doschak, Ph. D. , J. M. LaMothe, Ph. D. , D. M. L. Cooper, B. Sc
DGEMRIC as a tool for measuring changes in cartilage quality following high tibial osteotomy: a feasibility study  M. Rutgers, L.W. Bartels, A.I. Tsuchida,
K.H. Collins, R.A. Reimer, R.A. Seerattan, T.R. Leonard, W. Herzog 
Multimodal imaging demonstrates concomitant changes in bone and cartilage after destabilisation of the medial meniscus and increased joint laxity  J.P.
Is increased joint loading detrimental to obese patients with knee osteoarthritis? A secondary data analysis from a randomized trial  M. Henriksen, D.J.
Quantification of differences in bone texture from plain radiographs in knees with and without osteoarthritis  J. Hirvasniemi, J. Thevenot, V. Immonen,
Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison.
In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model  F. Intema, H.A.W.
D. Hayashi, F.W. Roemer, A. Guermazi  Osteoarthritis and Cartilage 
Integrin α1β1 protects against signs of post-traumatic osteoarthritis in the female murine knee partially via regulation of epidermal growth factor receptor.
Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis  S. Thysen, F.P. Luyten, R.J. Lories  Osteoarthritis.
Pre-radiographic osteoarthritic changes are highly prevalent in the medial patella and medial posterior femur in older persons: Framingham OA study  D.
Osteoarthritis development in novel experimental mouse models induced by knee joint instability  S. Kamekura, M.D., K. Hoshi, M.D., Ph.D., T. Shimoaka,
Joint loading and proximal tibia subchondral trabecular bone microarchitecture differ with walking gait patterns in end-stage knee osteoarthritis  B.C.
Nanoindentation modulus of murine cartilage: a sensitive indicator of the initiation and progression of post-traumatic osteoarthritis  B. Doyran, W. Tong,
R. Takaishi, T. Aoyama, X. Zhang, S. Higuchi, S. Yamada, T. Takakuwa 
In vivo imaging of cartilage degeneration using μCT-arthrography
Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography  N.J. Willett, T. Thote, M. Hart,
Surface roughness and thickness analysis of contrast-enhanced articular cartilage using mesh parameterization  T. Maerz, M.D. Newton, H.W.T. Matthew,
Changes to the articular cartilage thickness profile of the tibia following anterior cruciate ligament injury  E.C. Argentieri, D.R. Sturnick, M.J. DeSarno,
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
Osteoarthritis year 2012 in review: imaging
Presentation transcript:

High resolution micro arthrography of hard and soft tissues in a murine model  X.I. Gu, P.E. Palacio-Mancheno, D.J. Leong, Y.A. Borisov, E. Williams, N. Maldonado, D. Laudier, R.J. Majeska, M.B. Schaffler, H.B. Sun, L. Cardoso  Osteoarthritis and Cartilage  Volume 20, Issue 9, Pages 1011-1019 (September 2012) DOI: 10.1016/j.joca.2012.05.004 Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 On the left side, histograms of X-ray absorption in HUs for (A) air, (B) water, (C) 250 mg/cm3 HA phantom, (D) 750 g/cm3 HA phantom. On the right side, histograms represent (F) 1:0 LDM and HDM dilutions (G) 1:1 LDM and HDM dilutions, (H) 1:3 LDM and HDM dilutions, (I) 1:4 LDM and HDM dilutions. Bottom row indicates histograms of VOI of knee joint for (E) soft and hard tissues injected with 1:0 LDM, and (J) soft and hard tissues injected with 1:0 HDM. Osteoarthritis and Cartilage 2012 20, 1011-1019DOI: (10.1016/j.joca.2012.05.004) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Contrast enhanced μCT images of a rat knee joint at 2.7 μm voxel size. (A) Transverse plane of 1:0 LDM scan indicating the Patellar Tendon (PT) and femoral cartilage (arrows); inset in panel A showing subchondral bone is magnified in panel E. (B) Coronal plane showing the Medial Meniscus (MM), Lateral Meniscus (LM); and femoral and tibial growth plate; inset in panel B showing a magnified view of Anterior Cruciate Ligament (ACL), Posterior Cruciate Ligament (PCL) and tibial cartilage (arrows) in panel F. (C) Transverse plane of a 1:0 HDM scan showing the Lateral Collateral Ligament (LCL), Medial Collateral Ligament (MCL) and femoral cartilage (arrows); inset in panel C displaying a magnified view of femoral cartilage, subchondral bone and microfil interface in panel G. (D) Coronal plane of a 1:0 HDM scan indicating the Posterior Cruciate Ligament (arrows) and femoral growth plate; inset in panel D showing a magnified view in greater detailed of tibial trabecular bone and growth plate subchondral bone in panel H (arrows). Osteoarthritis and Cartilage 2012 20, 1011-1019DOI: (10.1016/j.joca.2012.05.004) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Comparison among structures and thickness measurements of μCT and histological images. Corresponding sagittal view of (A) histology and (B) μCT images of the same knee joint. (C) Magnified view of inset in panel A, indicating bone (blue), HDM contrast agent (orange) and cartilage (light pink). (D) Magnified view of inset area shown in panel B, indicating bone (gray color), HDM contrast agent (light gray) and cartilage (black). White arrows indicate the cartilage in all images. (E) Pearson's correlation coefficient between histology and μCT cartilage thickness was found R2 = 0.90 with a slope of 0.97. Osteoarthritis and Cartilage 2012 20, 1011-1019DOI: (10.1016/j.joca.2012.05.004) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Single sagittal slice of μCT images with LDM (n = 6) and HDM (n = 6) at resolutions of 2.7, 11.0, 22.1, 44.2, and 88.3 μm voxel size. (A) Demonstrating the effect of resolution on the ability to resolve tissues and structures in the knee joint injected with 1:0 LDM. At 44-μm voxel size, the tissues boundaries are blurred owing to partial volume effect so that the gray scale is sufficiently reduced to the extent that they cannot be differentiated from each other. Same partial volume effect is seen on (B) however knee joint was injected with 1:0 HDM. Quantitative assessment (mean ± 95% CI shown as error bars) of cartilage thickness % error (C) and cartilage volume % error (D) as a function of voxel size (16 repeated observations per independent sample). Osteoarthritis and Cartilage 2012 20, 1011-1019DOI: (10.1016/j.joca.2012.05.004) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Contrast enhanced μCT images of tibiofemoral joints after surgical destabilization of medial meniscus. (A and B) Coronal plane displaying the medial meniscus out of place. (C and D) sagittal views of the DMM model showing ulceration and erosion of tibial and femoral cartilage respectively. (E and F) Magnified views of A and B showing the formation of Oph in the tibia and femur. (G and H) disruption and ulceration of femoral and tibial cartilage. Osteoarthritis and Cartilage 2012 20, 1011-1019DOI: (10.1016/j.joca.2012.05.004) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Characterization of bone microarchitecture and cartilage thickness at four distinct compartments (LFC, LTP, MFC, and MTP) of the tibiofemoral joint from DMM (n = 5) and CN (n = 5) groups. (A) trabecular porosity (ϕ), (B) trabecular number (Tb.N), (C) trabecular thickness (Tb.Th), (D) trabecular spacing (Tb.Sp), (E) degree of anisotropy (DA), and F) cartilage thickness (Cg.Th). Data shown as mean ± 95 confidence interval (error bars), * indicates significant differences between groups with P < 0.05 level, ns indicates non significant differences. Osteoarthritis and Cartilage 2012 20, 1011-1019DOI: (10.1016/j.joca.2012.05.004) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions