The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure of the Vinyl Chloride-Hydrogen Chloride Complex Joseph P. Messinger, Helen O. Leung, Mark D. Marshall Chemistry Department, Amherst College Amherst, Massachusetts
Background: Binding Conformations 19.8 (3)° 2.02 (4) Å 41.6 (51)° 2.59 (1) Å 2.319 (6) Å 2.752 (4) Å Leung, H. O.; Marshall, M. D. J. Chem. Phys. 126, 2007. Leung, H. O.; Marshall, M. D. 67th ISMS, TH01, 2012.
Background: Acid Substitution 36.5 (2)° 18.3 (1)° 18.7 (15)° 1.892 (14) Å 2.123 (1) Å 2.441 (4) Å Cole, G. C.; Legon, A. C. Chem. Phys. Lett. 400, 2004. Kisiel, Z.; Fowler, P. W.; Legon, A. C. J. Chem. Phys. 93, 1990. Cole, G. C.; Legon, A. C. Chem. Phys. Lett. 369, 2003.
Background: Chloroethylene 19.8 (3)° Leung, H.O.; Marshall, M. D.; Feng, F. J. Phys. Chem. A 117, 2013. 2.59 (1) Å 2.319 (6) Å 3.01 (1) Å 58.5 (5)° 2.939 (4) Å Leung, H. O.; Marshall, M. D. 67th ISMS, TH01, 2012.
Non-Planar Theoretical Calculations Gaussian 09 MP2/6-311++G(2d,2p)
Minima Structures Energy (cm-1) 35.05 52.07 35.05 52.07 A = 5669.18 MHz μa = 1.85 Debye B = 1667.83 MHz μb = 1.04 Debye C = 1325.81 MHz μc = 0.32 Debye
Experimental Methods Chirped pulse Fourier transform microwave spectrometer: 5.6- 18.1 GHz Balle-Flygare Fourier transform microwave spectrometer: 6.0- 19.2 GHz Mixture was 1% vinyl chloride and 1% HCl in argon Photo courtesy of Jessica Mueller, Amherst College Photo courtesy of Aaron Bozzi, Amherst College
Experimental Results
Experimental Results C2H335Cl-H35Cl C2H337Cl-H35Cl C2H335Cl-H37Cl C2H335Cl-H35Cl C2H337Cl-H35Cl C2H335Cl-H37Cl C2H337Cl-H37Cl A (MHz) 5703.7 (24) 5599.27 (70) 5715.19 (74) 5597.8 (14) B (MHz) 1590.1 (12) 1572.00 (15) 1535.28 (13) 1519.79 (17) C (MHz) 1267.8 (11) 1253.240 (98) 1235.16 (10) 1219.63 (13) Highest J 6 4 Highest Ka 2 1 Number of transitions 26 10 12 8 Number of a-type transitions 21 7 9 Number of b-type transitions 5 3 RMS (MHz) 3.154 1.054 1.127 1.302
Experimental Constants Theoretical Constants Experimental Results C2H335Cl-H35Cl A (MHz) 5703.7 (24) B (MHz) 1590.1 (12) C (MHz) 1267.8 (11) Highest J 6 Highest Ka 2 Number of transitions 26 Number of a-type transitions 21 Number of b-type transitions 5 RMS (MHz) 3.154 Experimental Constants Theoretical Constants A (MHz) 5703.7028 (75) 5669.18 B (MHz) 1590.0937 (36) 1667.83 C (MHz) 1267.8267 (34) 1325.81 Inertial Defect = -7.817 amu·Å2
Experimental Results: Doubling
Ground and Excited States Ground Tunneling State Excited Tunneling State A (MHz) 5703.7 (24) 5831 (31) B (MHz) 1590.1 (12) 1592.24 (40) C (MHz) 1267.8 (11) 1269.49 (64) Number of transitions 26 7 Number of a-type transitions 21 Number of b-type transitions 5 RMS (MHz) 3.154 1.488
Tunneling Calculations Gaussian 09 MP2/6-311++G(2d,2p)
Structure Determination Kraitchman Substitution C2H3Cl HCl |a| 1.3110 (11) 2.38115 (63) |b| 0.8249 (16) 0.302i (50) |c| 0.086i (17) 0.113i (13) RMS = 0.180 amu·Å2
Vinyl Chloride Complexes
Discussion Explanation for non-planar binding conformation: Dispersion forces: Ar-haloethylene complexes Electrostatic: Cl has different electron distribution than F Steric effects Vinyl Chloride Vinyl Fluoride 64.8°
Conclusions - First non-planar haloetheylene-protic acid complex found - Importance of acid identity in chloroethylene complexes - Role of dispersion, electrostatics and sterics. Future Work - Hyperfine structure - More substituted chloroethylenes
Acknowledgements