The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.

Slides:



Advertisements
Similar presentations
Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Advertisements

1 THz vibration-rotation-tunneling (VRT) spectroscopy of the water (D 2 O) 3 trimer : --- the 2.94THz torsional band L. K. Takahashi, W. Lin, E. Lee, F.
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
Adam J. Fleisher Justin W. Young David W. Pratt Department of Chemistry University of Pittsburgh Internal dynamics of water attached to a photoacidic substrate:
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
Waveguide Chirped-Pulse Fourier Transform Microwave Spectroscopy of 2-Ethoxyethanol Maria A. Phillips, Steven Shipman New College of Florida.
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
Bri Gordon Steven T. Shipman New College of Florida
OSU RC10 Gas phase measurements and calculations of HCl and Ferrocene Adam Daly and Stephen Kukolich Chemistry Department University of Arizona.
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
S TRUCTURE D ETERMINATION AND CH···F I NTERACTIONS IN H 2 C=CHF···H 2 C=CF 2 B Y F OURIER - T RANSFORM M ICROWAVE S PECTROSCOPY Rachel E. Dorris, Rebecca.
Rotational Spectroscopic Investigations Of CH 4 ---H 2 S Complex Aiswarya Lakshmi P. and E. Arunan Inorganic and Physical Chemistry Indian Institute of.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
Formic Sulfuric Anhydride: A new chemical species with possible implications for atmospheric aerosol 1 Rebecca B. Mackenzie, Christopher T. Dewberry, and.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
Rotational Spectra and Structure of PhenylacetyleneH2S complex
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Justin Young, Leonardo Alvarez-Valtierra and David W. Pratt.
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Substitution Structures of Large Molecules and Medium Range Correlations in Quantum Chemistry Calculations Luca Evangelisti Dipartmento di Chimica “Giacomo.
Department of Chemistry
Structure and tunneling dynamics of gauche-1,3-butadiene
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
STEPHEN G. KUKOLICH, MING SUN, ADAM M. DALY University of Arizona
Carlos Cabezas and Yasuki Endo
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) INVESTIGATIONS INTO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE; A MOLECULE OF ATMOSPHERIC.
Chirped Pulse Microwave Spectroscopy on Methyl Butanoate
Becca Mackenzie Chris Dewberry, Ken Leopold
Department of Chemistry
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
Microwave spectra of 1- and 2-bromobutane
G. S. Grubbs IIa, Derek S. Frankb, Daniel A. Obenchainb, S. A
CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
Aaron M. Pejlovas and Dr. Stephen G. Kukolich
THE STUDY OF ACENAPHTHENE AND ITS COMPLEXATION WITH WATER
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
The rotational spectrum of the urea isocyanic acid complex
Methylindoles – Microwave Spectroscopy
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
ASSIGNMENT OF THE PERFLUOROPROPIONIC ACID-FORMIC ACID COMPLEX AND THE DIFFICULTIES OF INCLUDING HIGH Ka TRANSITIONS Daniel A. Obenchain, Eric A. Arsenault,
Michal M. Serafin, Sean A. Peebles
Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick,
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
MICROWAVE SPECTRA, MOLECULAR STRUCTURE AND AROMATIC CHARACTER OF BN-NAPHTHALENE (4A,8A-AZABORANAPHTHALENE) AARON M. PEJLOVAS, STEPHEN G. KUKOLICH, University.
Elias M. NEEMAN and Thérèse R. HUET
Presentation transcript:

The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure of the Vinyl Chloride-Hydrogen Chloride Complex Joseph P. Messinger, Helen O. Leung, Mark D. Marshall Chemistry Department, Amherst College Amherst, Massachusetts

Background: Binding Conformations 19.8 (3)° 2.02 (4) Å 41.6 (51)° 2.59 (1) Å 2.319 (6) Å 2.752 (4) Å Leung, H. O.; Marshall, M. D. J. Chem. Phys. 126, 2007. Leung, H. O.; Marshall, M. D. 67th ISMS, TH01, 2012.

Background: Acid Substitution 36.5 (2)° 18.3 (1)° 18.7 (15)° 1.892 (14) Å 2.123 (1) Å 2.441 (4) Å Cole, G. C.; Legon, A. C. Chem. Phys. Lett. 400, 2004. Kisiel, Z.; Fowler, P. W.; Legon, A. C. J. Chem. Phys. 93, 1990. Cole, G. C.; Legon, A. C. Chem. Phys. Lett. 369, 2003.

Background: Chloroethylene 19.8 (3)° Leung, H.O.; Marshall, M. D.; Feng, F. J. Phys. Chem. A 117, 2013. 2.59 (1) Å 2.319 (6) Å 3.01 (1) Å 58.5 (5)° 2.939 (4) Å Leung, H. O.; Marshall, M. D. 67th ISMS, TH01, 2012.

Non-Planar Theoretical Calculations Gaussian 09 MP2/6-311++G(2d,2p)

Minima Structures Energy (cm-1) 35.05 52.07 35.05 52.07 A = 5669.18 MHz μa = 1.85 Debye B = 1667.83 MHz μb = 1.04 Debye C = 1325.81 MHz μc = 0.32 Debye

Experimental Methods Chirped pulse Fourier transform microwave spectrometer: 5.6- 18.1 GHz Balle-Flygare Fourier transform microwave spectrometer: 6.0- 19.2 GHz Mixture was 1% vinyl chloride and 1% HCl in argon Photo courtesy of Jessica Mueller, Amherst College Photo courtesy of Aaron Bozzi, Amherst College

Experimental Results

Experimental Results C2H335Cl-H35Cl C2H337Cl-H35Cl C2H335Cl-H37Cl   C2H335Cl-H35Cl C2H337Cl-H35Cl C2H335Cl-H37Cl C2H337Cl-H37Cl A (MHz) 5703.7 (24) 5599.27 (70) 5715.19 (74) 5597.8 (14) B (MHz) 1590.1 (12) 1572.00 (15) 1535.28 (13) 1519.79 (17) C (MHz) 1267.8 (11) 1253.240 (98) 1235.16 (10) 1219.63 (13) Highest J 6 4 Highest Ka 2 1 Number of transitions 26 10 12 8 Number of a-type transitions 21 7 9 Number of b-type transitions 5 3 RMS (MHz) 3.154 1.054 1.127 1.302

Experimental Constants Theoretical Constants Experimental Results   C2H335Cl-H35Cl A (MHz) 5703.7 (24) B (MHz) 1590.1 (12) C (MHz) 1267.8 (11) Highest J 6 Highest Ka 2 Number of transitions 26 Number of a-type transitions 21 Number of b-type transitions 5 RMS (MHz) 3.154   Experimental Constants Theoretical Constants A (MHz) 5703.7028 (75) 5669.18 B (MHz) 1590.0937 (36) 1667.83 C (MHz) 1267.8267 (34) 1325.81 Inertial Defect = -7.817 amu·Å2

Experimental Results: Doubling

Ground and Excited States   Ground Tunneling State Excited Tunneling State A (MHz) 5703.7 (24) 5831 (31) B (MHz) 1590.1 (12) 1592.24 (40) C (MHz) 1267.8 (11) 1269.49 (64) Number of transitions 26 7 Number of a-type transitions 21 Number of b-type transitions 5 RMS (MHz) 3.154 1.488

Tunneling Calculations Gaussian 09 MP2/6-311++G(2d,2p)

Structure Determination Kraitchman Substitution   C2H3Cl HCl |a| 1.3110 (11) 2.38115 (63) |b| 0.8249 (16) 0.302i (50) |c| 0.086i (17) 0.113i (13) RMS = 0.180 amu·Å2

Vinyl Chloride Complexes

Discussion Explanation for non-planar binding conformation: Dispersion forces: Ar-haloethylene complexes Electrostatic: Cl has different electron distribution than F Steric effects Vinyl Chloride Vinyl Fluoride 64.8°

Conclusions - First non-planar haloetheylene-protic acid complex found - Importance of acid identity in chloroethylene complexes - Role of dispersion, electrostatics and sterics. Future Work - Hyperfine structure - More substituted chloroethylenes

Acknowledgements