Takafumi Minamimoto, Richard C. Saunders, Barry J. Richmond  Neuron 

Slides:



Advertisements
Similar presentations
Soyoun Kim, Jaewon Hwang, Daeyeol Lee  Neuron 
Advertisements

Heterogeneous Coding of Temporally Discounted Values in the Dorsal and Ventral Striatum during Intertemporal Choice  Xinying Cai, Soyoun Kim, Daeyeol.
Volume 83, Issue 1, Pages (July 2014)
Volume 73, Issue 3, Pages (February 2012)
Volume 86, Issue 3, Pages (May 2015)
A Source for Feature-Based Attention in the Prefrontal Cortex
Araceli Ramirez-Cardenas, Maria Moskaleva, Andreas Nieder 
Volume 51, Issue 6, Pages (September 2006)
Volume 95, Issue 5, Pages e5 (August 2017)
Value Representations in the Primate Striatum during Matching Behavior
Habit Learning by Naive Macaques Is Marked by Response Sharpening of Striatal Neurons Representing the Cost and Outcome of Acquired Action Sequences 
Martin O'Neill, Wolfram Schultz  Neuron 
Attention-Induced Variance and Noise Correlation Reduction in Macaque V1 Is Mediated by NMDA Receptors  Jose L. Herrero, Marc A. Gieselmann, Mehdi Sanayei,
Volume 81, Issue 6, Pages (March 2014)
Volume 97, Issue 4, Pages e6 (February 2018)
Complementary Roles for Primate Frontal and Parietal Cortex in Guarding Working Memory from Distractor Stimuli  Simon Nikolas Jacob, Andreas Nieder  Neuron 
Vincent B. McGinty, Antonio Rangel, William T. Newsome  Neuron 
Differential Impact of Behavioral Relevance on Quantity Coding in Primate Frontal and Parietal Neurons  Pooja Viswanathan, Andreas Nieder  Current Biology 
Feature- and Order-Based Timing Representations in the Frontal Cortex
Cortical Mechanisms of Smooth Eye Movements Revealed by Dynamic Covariations of Neural and Behavioral Responses  David Schoppik, Katherine I. Nagel, Stephen.
Gamma and the Coordination of Spiking Activity in Early Visual Cortex
Volume 73, Issue 3, Pages (February 2012)
Volume 26, Issue 7, Pages (April 2016)
Volume 65, Issue 6, Pages (March 2010)
Dynamic Coding for Cognitive Control in Prefrontal Cortex
Torben Ott, Simon Nikolas Jacob, Andreas Nieder  Neuron 
Huihui Zhou, Robert Desimone  Neuron 
Volume 97, Issue 3, Pages e8 (February 2018)
Liu D. Liu, Christopher C. Pack  Neuron 
Neural Correlates of Reaching Decisions in Dorsal Premotor Cortex: Specification of Multiple Direction Choices and Final Selection of Action  Paul Cisek,
Differences between Neural Activity in Prefrontal Cortex and Striatum during Learning of Novel Abstract Categories  Evan G. Antzoulatos, Earl K. Miller 
Franco Pestilli, Marisa Carrasco, David J. Heeger, Justin L. Gardner 
Functional Microcircuit Recruited during Retrieval of Object Association Memory in Monkey Perirhinal Cortex  Toshiyuki Hirabayashi, Daigo Takeuchi, Keita.
Independent Category and Spatial Encoding in Parietal Cortex
Prefrontal Cortex Activity Related to Abstract Response Strategies
Caleb E. Strait, Tommy C. Blanchard, Benjamin Y. Hayden  Neuron 
Natalja Gavrilov, Steffen R. Hage, Andreas Nieder  Cell Reports 
Eye Movement Preparation Modulates Neuronal Responses in Area V4 When Dissociated from Attentional Demands  Nicholas A. Steinmetz, Tirin Moore  Neuron 
Ethan S. Bromberg-Martin, Masayuki Matsumoto, Okihide Hikosaka  Neuron 
Sharon C. Furtak, Omar J. Ahmed, Rebecca D. Burwell  Neuron 
Ryo Sasaki, Takanori Uka  Neuron  Volume 62, Issue 1, Pages (April 2009)
Feng Han, Natalia Caporale, Yang Dan  Neuron 
Effects of Long-Term Visual Experience on Responses of Distinct Classes of Single Units in Inferior Temporal Cortex  Luke Woloszyn, David L. Sheinberg 
Volume 54, Issue 2, Pages (April 2007)
Broca's Area and the Hierarchical Organization of Human Behavior
Georgia G. Gregoriou, Stephen J. Gotts, Robert Desimone  Neuron 
Guilhem Ibos, David J. Freedman  Neuron 
Volume 86, Issue 3, Pages (May 2015)
Value-Based Modulations in Human Visual Cortex
Franco Pestilli, Marisa Carrasco, David J. Heeger, Justin L. Gardner 
Social Signals in Primate Orbitofrontal Cortex
Volume 72, Issue 6, Pages (December 2011)
Wael F Asaad, Gregor Rainer, Earl K Miller  Neuron 
Peter H. Rudebeck, Andrew R. Mitz, Ravi V. Chacko, Elisabeth A. Murray 
Ethan S. Bromberg-Martin, Okihide Hikosaka  Neuron 
Volume 88, Issue 4, Pages (November 2015)
Sarah R. Heilbronner, Michael L. Platt  Neuron 
Posterior Parietal Cortex Encodes Autonomously Selected Motor Plans
Mark J. Buckley, Natasha Sigala  Neuron 
Biased Associative Representations in Parietal Cortex
Daniela Vallentin, Andreas Nieder  Current Biology 
Cortical Signals for Rewarded Actions and Strategic Exploration
Volume 78, Issue 4, Pages (May 2013)
Cross-Modal Associative Mnemonic Signals in Crow Endbrain Neurons
The Postsaccadic Unreliability of Gain Fields Renders It Unlikely that the Motor System Can Use Them to Calculate Target Position in Space  Benjamin Y.
Christoph Kayser, Nikos K. Logothetis, Stefano Panzeri  Current Biology 
Volume 99, Issue 1, Pages e4 (July 2018)
Supratim Ray, John H.R. Maunsell  Neuron 
Matthew R. Roesch, Adam R. Taylor, Geoffrey Schoenbaum  Neuron 
Volume 61, Issue 6, Pages (March 2009)
Presentation transcript:

Monkeys Quickly Learn and Generalize Visual Categories without Lateral Prefrontal Cortex  Takafumi Minamimoto, Richard C. Saunders, Barry J. Richmond  Neuron  Volume 66, Issue 4, Pages 501-507 (May 2010) DOI: 10.1016/j.neuron.2010.04.010 Copyright © 2010 Elsevier Inc. Terms and Conditions

Figure 1 Behavioral Paradigm and Location of the Lesion (A) Sequence of events during a trial of the reward-delay task. A visual cue (Cue) indicates size and delay interval for the reward after successful behavioral reaction (bar release within 200–3000 ms after green target appears). (B) Relationships between visual incentive cues and reward condition. (C) Lateral view of intended LPFC lesions (gray). PS, principal sulcus; ARC, arcuate sulcus. (D–F) Drawings showing the extent of the lesion (gray) from a single case. The numbers, +29, +34, +38, show distance for the section from auditory meatus in millimeters (d–f in C). See also Figure S1. Neuron 2010 66, 501-507DOI: (10.1016/j.neuron.2010.04.010) Copyright © 2010 Elsevier Inc. Terms and Conditions

Figure 2 Error Rates of Monkeys Performing the Task with Black and White Pattern and Categorical Cues Before and After LPFC Lesions (A) Black and white pattern cues before lesion. (B) Categorical cue set before lesion. (C) Black and white pattern cues after lesion. (D) Prelesion-learned category set after lesion. (E) Unique exemplar set. (F) New category set after lesion. (G) New set unique exemplars. Red and yellow bars indicate average error rate in high(H)- and low(L)-incentive conditions, respectively. Symbols indicate error rates for each individual. See also Figures S2–S4. Neuron 2010 66, 501-507DOI: (10.1016/j.neuron.2010.04.010) Copyright © 2010 Elsevier Inc. Terms and Conditions

Figure 3 Categorical Responses to Visual Stimuli (A) Two examples of histograms of reaction times (left), motivation index (middle), and smoothed histogram (bin width = 1.0 × 10−5, smoothed by Gaussian kernel; SD = 3.0 × 10−4; right). (B) Smoothed histograms of motivation index in monkey AH. Red and black histograms are for 20 high- and 20 low-incentive cues, respectively. (C) ROC values (color coded as in scale on right) calculated between trials assigned by cues on x axis and those on y axis. (D) Box plots of ROC values for within category, e.g., Dog-Dog (D-D) or Cat-Cat (C-C), and for between category, e.g., Dog-Cat (D-C), comparison. For each box the median (center line), a wedge showing the 95% confidence limits for median, the edges of the box show 25th and 75th quantiles, and the whiskers show 5th and 95th quantiles are shown. Dots show individual data points outside those limits. Neuron 2010 66, 501-507DOI: (10.1016/j.neuron.2010.04.010) Copyright © 2010 Elsevier Inc. Terms and Conditions

Figure 4 Block-by-Block Development of Categorical Responses (A–C) Errors accumulating through the first 200 trials for high (red) and low (black) incentive condition in (A) first prelesion session, (B) first postlesion session with familiar cue set, (C) first postlesion session for new cue set in monkey AH. (D–F) Average (thick lines) and ± SEM (shaded area) ROC values across monkeys are shown in a block-by-block basis. (D) Category learning prelesion. (E and F) Learned and new category in postlesion test, respectively. Results of sessions 1 to 3 are plotted in black, red, and green, respectively. Neuron 2010 66, 501-507DOI: (10.1016/j.neuron.2010.04.010) Copyright © 2010 Elsevier Inc. Terms and Conditions