Data Representation.

Slides:



Advertisements
Similar presentations
How Images are Represented Bitmap images (Dots used to draw the image) Monochrome images 8 bit grey scale images 24 bit colour Colour lookup tables Vector.
Advertisements

Lesson Objectives Explain the representation of an image as a series of pixels represented in binary Explain the need for meta data to be included in the.
Bitmapped Images 27 th November 2014 With Mrs
File Formats By Jack Turner. Raster (Bitmap) Raster or bitmap is a dot matrix data structure, containing columns of dots and rows, of a graphics image.
An Introduction to Scanning and Storing Photographs and Graphics Bryn Jones Aug 2002
Computer Systems Nat 4.5 Computing Science Data Representation Lesson 4: Storing Graphics EXTENSION.
COMP Bitmapped and Vector Graphics Pages Using Qwizdom.
GCSE Computing#BristolMet Session Objectives#9 MUST identify the data needed for a computer to display an image correctly (metadata) SHOULD describe the.
© GCSE Computing Candidates should be able to:  explain the representation of an image as a series of pixels represented in binary  explain the need.
1 Perception, Illusion and VR HNRS 299, Spring 2008 Lecture 14 Introduction to Computer Graphics.
Images Data Representation. Objectives  Understand the terms bitmap & pixel  Understand how bitmap images are stored using binary in a computer system.
Image Representation. Objectives  Bitmaps: resolution, colour depth and simple bitmap file calculations.  Vector graphics: drawing list – objects and.
1 Ethics of Computing MONT 113G, Spring 2012 Session 10 HTML Tables Graphics on the Web.
Chapter 4: Representation of data in computer systems: Images OCR Computing for GCSE © Hodder Education 2011.
Marr CollegeHigher ComputingSlide 1 Higher Computing: COMPUTER SYSTEMS Part 1: Data Representation – 6 hours.
Graphic Format Factors
Representation of Images You need to know: (k) explain the representation of an image as a series of pixels represented in binary (l) explain the need.
Graphics An image is made up of tiny dots called pixels (“picture elements”) The resolution determines the.
Data Representation The storage of Text Numbers Graphics.
Computer Systems Nat 4.5 Computing Science Data Representation Lesson 4: Representing and Storing Graphics EXTENSION.
Digital Images are represented by manipulating this…
Image File Formats. What is an Image File Format? Image file formats are standard way of organizing and storing of image files. Image files are composed.
Resolution The resolution of an image is determined by the number of individually addressable points that make up the image, whether it is the number.
Graphics in a computers memory How a picture (i.e. a graphic) is stored in a computers memory A computer screen is made up of little dots, called PICture.
Representation of Data in Computer Systems
Information Systems Design and Development Media Types Computing Science.
By the end of this session you should be able to... Understand character sets and why these are used within computer systems. Understand how characters.
Computer Systems Nat 5 Computing Science Data Representation
Unit 2.6 Data Representation Lesson 3 ‒ Images
Lesson Objectives Aims You should be able to:
Image and Sound Representation
Storing Graphics Nat 5 Data Representation Lesson 4a: Storing Graphics
Understanding Web Graphics
Exploring Computer Science - Lesson 3-4
Images Data Representation.
Data Representation Images.
Data Representation.
Representing images.
Chapter 3 Image Files © 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website,
Denary to Binary Numbers & Binary to Denary
Computer Systems Nat 4/5 Data Representation Lesson 4:
Exploring Computer Science - Lesson 3-4
Binary Representation in Audio and Images
Computer Science Higher
How to Convert Pictures into Numbers
BTEC NCF Dip in Comp - Unit 02 Fundamentals of Computer Systems Lesson 10 - Text & Image Representation Mr C Johnston.
Exploring Computer Science - Lesson 3-4
Chapter III, Desktop Imaging Systems and Issues: Lesson IV Working With Images
A computer display is made up of small squares, called pixels.
Learning Intention I will learn how a computer stores graphics.
GRAPHICS Source:
File size and image quality
An Introduction to Scanning and Storing Photographs and Graphics
Bitmap, Vector, Pixels, Resolution, Metadata.
Representing Images 2.6 – Data Representation.
What do these words mean to you?
Web Design and Development
Ch2: Data Representation
Summer Term Year 10 Slides
Web Programming– UFCFB Lecture 7
Multimedia System Image
Computer Systems Nat 4.5 Computing Science Data Representation
Basic Concepts of Digital Imaging
Computer Networks Lesson 4.
Do it now activity Use the coloured pencils to complete the do it now activity. Stick in your book.
Computer Systems Nat 4/5 Data Representation Lesson 4:
Computer Networks Lesson 5.
2.01 Investigate graphic image design.
WJEC GCSE Computer Science
Year 8 Unit 2 Bitmap Graphics
Presentation transcript:

Data Representation

Complete the worksheet to create an image from the co-ordinates given. Starter Complete the worksheet to create an image from the co-ordinates given.

Objective of the lesson Understand how computers store bitmap images. All of you will: Explain how computers use pixels and binary to store images. Most of you will: Explain how files are saved in bitmaps and how size and colour depth can affect the file size of an image. Explain the different types of file compression that are available. Some of you will: Identify factors that will affect the quality and file size of an image.

Homework Everybody should complete Task 1 to complete the crossword about bitmaps. Some of you may also want to get the extra marks by completing the extension find out the difference between vector images and bitmaps. This homework is due in next lesson. Make sure you have written your homework clearly in your planner.

Bitmaps Bitmaps are the name given to one way of storing graphics on a computer system. A bitmap is laid out in a grid format with each box on the grid containing one “Picture element” which is better known as a “Pixel”.

Practice drawing in pixels Copy the Bitmap Images spreadsheet from the school network into your own work area and then open the file.

Draw an 8 x 8 bit image Look at the image in the grid on the left. You are going to fill in the grid on the right with either a 1 or a 0 in each box. 1 = part of the image is showing in the box 0 = the box is empty

Draw an 8 x 8 bit image Once you have completed the grid then click on the next worksheet called “Final 8 x 8 image” and all the 1’s will be shown as black and the 0’s you entered will be shown as white. What has happened to the quality of your image?

What has happened to your image? It is not the same quality as the original image. This is known as “Pixelated” where the image is made up of large blocks rather than smooth lines. This can happen to small or poor quality images you copy from the internet when you try to make them larger. How can we get a better quality image using this technique? We can use a more detailed grid, we will do the same again but rather than an 8 by 8 grid, we will use a 16 by 16 grid.

16 x 16 image Move onto the next worksheet and repeat the process with a 16 x 16 grid. Have a look at the final 16 bit image on the next worksheet. What happened to the quality of the image compared with when we had an 8 x 8 grid?

Image sizes We have only been working on small grids but usually bitmaps have many more pixels to make up the picture and typically have thousands of pixels for one image. A typical screen size is 1280 by 800 pixels which works out as (1280 x 800) 1,024,000 pixels to cover the whole screen. 1280 800

Colour images The image you have just created uses 16 x 16 pixels and we are only allowing 1 bit or each pixel to show either 1 for black or 0 for white. If we wanted to have colour in the image you would need more bits per pixel so that you can allocate a particular colour rather than just black and white.

Colour images We are going to use a wider range of numbers to make a colour image. Use the numbers 0 to 3 inclusive. Make up your own image using these colours.

Colour images With 1 bit per pixel you can have only 2 colours (black or white). 0 = White 1 = Black With 2 bits per pixel you can have 4 colours. 00 = White 01 = Red 10 = Green 11 = Blue Normally colour images have many more colours and so use more bits per pixel.

Bits and colour depth How many colours can be saved with 3 bits per pixel? 8 How many colours can be stored with 16 bits per pixel? 65,536 Most images have 24 bit colour which allows over 16 million colours.

File size In order to work out the image size you would need to know: The size of the grid (width and depth) The number of bits per pixel for the colour depth For instance an image which is 1000 x 800 pixels with a 16 bit colour depth would be: (1000 x 800) x 16 = 12,800,000 bits This is more commonly written as 12MB.

Resolution The resolution describes how big the pixels are in the image. The higher the resolution the better quality the image is. It is usually measures in pixels per inch. If you make a bitmap image larger then often it will become pixelated as the pixels have to become bigger to fill the space you want.

Meta Data Meta Data is at the beginning of a file to tell the computer how to process the data. What sort of information would need to be included in the meta data? Size of the image grid (width and height) Colour depth (number of bits per pixel) Resolution to display the image in (pixels per inch)

Example of an image in binary. 011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101000010100010011000101010100100010101000110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101001101010110101001010011101001100010101101010001010100101110101010111010100101001010101001010101010001010101010000101010110001010101011010101010001010101010001010101010100010101010101010001010101110101011001010100110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101001101010110101001010011101001100010101101010001010100101110101010111010100101001010101001010101010001010101010000101010110001010101011010101010001010101010001010101010100010101010101010001010101110101011001010100110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101010100010101010100001010101100010101101010001010110110101

Example of an image in binary. 011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101000010100010011000101010100100010101000110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101001101010110101001010011101001100010101101010001010100101110101010111010100101001010101001010101010001010101010000101010110001010101011010101010001010101010001010101010100010101010101010001010101110101011001010100110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101001101010110101001010011101001100010101101010001010100101110101010111010100101001010101001010101010001010101010000101010110001010101011010101010001010101010001010101010100010101010101010001010101110101011001010100110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101010100010101010100001010101100010101101010001010110110101 This shows that the data that follows is to be treated as an image.

Example of an image in binary. 011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101000010100010011000101010100100010101000110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101001101010110101001010011101001100010101101010001010100101110101010111010100101001010101001010101010001010101010000101010110001010101011010101010001010101010001010101010100010101010101010001010101110101011001010100110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101001101010110101001010011101001100010101101010001010100101110101010111010100101001010101001010101010001010101010000101010110001010101011010101010001010101010001010101010100010101010101010001010101110101011001010100110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101010100010101010100001010101100010101101010001010110110101 Image width size.

Example of an image in binary. 011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101000010100010011000101010100100010101000110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101001101010110101001010011101001100010101101010001010100101110101010111010100101001010101001010101010001010101010000101010110001010101011010101010001010101010001010101010100010101010101010001010101110101011001010100110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101001101010110101001010011101001100010101101010001010100101110101010111010100101001010101001010101010001010101010000101010110001010101011010101010001010101010001010101010100010101010101010001010101110101011001010100110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101010100010101010100001010101100010101101010001010110110101 Image height size.

Example of an image in binary. 011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101000010100010011000101010100100010101000110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101001101010110101001010011101001100010101101010001010100101110101010111010100101001010101001010101010001010101010000101010110001010101011010101010001010101010001010101010100010101010101010001010101110101011001010100110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101001101010110101001010011101001100010101101010001010100101110101010111010100101001010101001010101010001010101010000101010110001010101011010101010001010101010001010101010100010101010101010001010101110101011001010100110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101010100010101010100001010101100010101101010001010110110101 Colour depth.

Example of an image in binary. 011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101000010100010011000101010100100010101000110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101001101010110101001010011101001100010101101010001010100101110101010111010100101001010101001010101010001010101010000101010110001010101011010101010001010101010001010101010100010101010101010001010101110101011001010100110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101001101010110101001010011101001100010101101010001010100101110101010111010100101001010101001010101010001010101010000101010110001010101011010101010001010101010001010101010100010101010101010001010101110101011001010100110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101010100010101010100001010101100010101101010001010110110101 Resolution.

Example of an image in binary. 011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101000010100010011000101010100100010101000110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101001101010110101001010011101001100010101101010001010100101110101010111010100101001010101001010101010001010101010000101010110001010101011010101010001010101010001010101010100010101010101010001010101110101011001010100110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101001101010110101001010011101001100010101101010001010100101110101010111010100101001010101001010101010001010101010000101010110001010101011010101010001010101010001010101010100010101010101010001010101110101011001010100110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101010100010101010100001010101100010101101010001010110110101 Image data.

Example of an image in binary. 011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101000010100010011000101010100100010101000110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101001101010110101001010011101001100010101101010001010100101110101010111010100101001010101001010101010001010101010000101010110001010101011010101010001010101010001010101010100010101010101010001010101110101011001010100110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101001101010110101001010011101001100010101101010001010100101110101010111010100101001010101001010101010001010101010000101010110001010101011010101010001010101010001010101010100010101010101010001010101110101011001010100110101011010100101001110100110001010110101000101010010111010101011101010010100101010100101010101000101010101000010101011000101010101101010101000101010101000101010101010001010101010101000101010111010101100101010011010101101010010100111010011000101011010100010101001011101010101110101001010010101010010101010100010101010100001010101100010101010110101010100010101010100010101010101000101010101010100010101011101010110010101010100010101010100001010101100010101101010001010110110101 End of image file message.

File compression As you have seen, files increase in memory size dramatically when they require a higher colour depth. That can cause problems when using the images in webpages or when transferring them as larger files take longer to transfer or load on the screen. There are two ways to compress a file: Lossy Lossless

Lossy This is when the file is compressed but looses some of it’s quality when this happens. The most common way is to reduce the colour depth from 24 bits to 8 bits but this can make the image appear granulated or have unusual colour blocks showing. JPEG is a lossy file compression type. Original image Compressed image

Lossless If we were going to send the following image then there are blocks of similar colour. Instead of sending the pixels individually for example for the first row they may save it as : red, red, red, blue, blue, red, red, red They could reduce the memory this takes up by saving the same line as: 3 x red, 2 x blue, 3 x red

Plenary Find an image on the internet and copy and paste it into Paint. Save one version in a Lossless compression format. Save another copy of the file in Lossy compression format. What has changed in the Lossy image? Look at the file size to see the difference it makes to the size of the file.