Development of a fully automatic shape model matching (FASMM) system to derive statistical shape models from radiographs: application to the accurate.

Slides:



Advertisements
Similar presentations
M. Fu, G. Huang, Z. Zhang, J. Liu, Z. Zhang, Z. Huang, B. Yu, F. Meng 
Advertisements

What should be considered in using standard knee radiographs to estimate mechanical alignment of the knee?  C.B. Chang, J.-Y. Choi, I.J. Koh, E.S. Seo,
The importance of dose in land-based supervised exercise for people with hip osteoarthritis. A systematic review and meta-analysis  T. Moseng, H. Dagfinrud,
Validity and responsiveness of a new measure of knee osteophytes for osteoarthritis studies: data from the osteoarthritis initiative  M. Hakky, M. Jarraya,
A statistical model of shape and density of the proximal femur in relation to radiological and clinical OA of the hip  J.H. Waarsing, R.M. Rozendaal,
Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess.
T1ρ and T2 relaxation times predict progression of knee osteoarthritis
Uwe G. Kersting, Ph. D. , Johann J. Stubendorff, M. D. , Matthias C
The relationships between bone mineral density in the spine, hip, distal femur and proximal tibia and medial minimum joint space width in the knees of.
Tribological and material properties for cartilage of and throughout the bovine stifle: support for the altered joint kinematics hypothesis of osteoarthritis 
Does measurement of the anatomic axis consistently predict hip-knee-ankle angle (HKA) for knee alignment studies in osteoarthritis? Analysis of long limb.
An MRI derived articular cartilage visualization framework
Evaluation of native hyaline cartilage and repair tissue after two cartilage repair surgery techniques with 23Na MR imaging at 7 T: initial experience 
The association between changes in synovial fluid levels of ARGS-aggrecan fragments, progression of radiographic osteoarthritis and self-reported outcomes:
M. C. Castaño-Betancourt, J. B. J. Van Meurs, S. Bierma-Zeinstra, F
Biomarkers reflect differences in osteoarthritis phenotypes of the lumbar spine: the Johnston County Osteoarthritis Project  A.P. Goode, A.E. Nelson,
3D Knee Bone Shape Predisposes to ACL Rupture: Data from the Osteoarthritis Initiative and the Kanon Study  M.A. Bowes, S. Lohmander, P.G. Conaghan, R.
Three-dimensional hip cartilage quality assessment of morphology and dGEMRIC by planar maps and automated segmentation  C. Siversson, A. Akhondi-Asl,
D. J. Bechard, T. B. Birmingham, A. A. Zecevic, I. C. Jones, K. M
Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis  H. Mitsuyama, M.D., Ph.D., R.M. Healey, B.S.,
Prevalence of cam hip shape morphology: a systematic review
Determining collagen distribution in articular cartilage using contrast-enhanced micro- computed tomography  H.J. Nieminen, T. Ylitalo, S. Karhula, J.-P.
Statistical evaluation of biomedical studies
Osteoarthritis and Cartilage
Relationships between tibial rim alignment and joint space width measurement reproducibility in non-fluoroscopic radiographs of osteoarthritic knees 
Three-dimensional MRI-based statistical shape model and application to a cohort of knees with acute ACL injury  V. Pedoia, D.A. Lansdown, M. Zaid, C.E.
Severity mapping of the proximal femur: a new method for assessing hip osteoarthritis with computed tomography  T.D. Turmezei, D.J. Lomas, M.A. Hopper,
Synovial changes detected by ultrasound in people with knee osteoarthritis – a meta- analysis of observational studies  A. Sarmanova, M. Hall, J. Moses,
Synovial pathology detected on ultrasound correlates with the severity of radiographic knee osteoarthritis more than with symptoms  M. Hall, S. Doherty,
H. Oka, M. D. , S. Muraki, M. D. , Ph. D. , T. Akune, M. D. , Ph. D
A novel fast knee cartilage segmentation technique for T2 measurements at MR imaging – data from the Osteoarthritis Initiative  C. Stehling, T. Baum,
Predictive and concurrent validity of cartilage thickness change as a marker of knee osteoarthritis progression: data from the Osteoarthritis Initiative 
Differences between X-ray and MRI-determined knee cartilage thickness in weight- bearing and non-weight-bearing conditions  M. Marsh, R.B. Souza, B.T.
M. Stumm, E. Boger, C. G. Gaissmaier, C. Oßwald, M. Blankenburg, R. D
Differences in radiographic features of knee osteoarthritis in African-Americans and Caucasians: the Johnston County Osteoarthritis Project  L. Braga,
L. Shamir, S. M. Ling, W. Scott, M. Hochberg, L. Ferrucci, I. G
Spontaneous osteoarthritis in Str/ort mice is unlikely due to greater vulnerability to mechanical trauma  B. Poulet, T.A.T. Westerhof, R.W. Hamilton,
B. Kaleem, F. Maier, H. Drissi, D.M. Pierce 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Matthew P. Sweet, MD  Journal of Vascular Surgery 
B. C. Fleming, H. L. Oksendahl, W. A. Mehan, R. Portnoy, P. D
L. McCann, E. Ingham, Z. Jin, J. Fisher  Osteoarthritis and Cartilage 
J.A. Lynch, N. Parimi, R.K. Chaganti, M.C. Nevitt, N.E. Lane 
Time to be positive about negative data?
Statistical shape modeling of proximal femoral shape deformities in Legg–Calvé– Perthes disease and slipped capital femoral epiphysis  E.F. Chan, C.L.
Automatic morphometric cartilage quantification in the medial tibial plateau from MRI for osteoarthritis grading  E.B. Dam, Ph.D., J. Folkesson, M.Sc.,
Residual hip dysplasia at 1 year after treatment for neonatal hip instability is not related to degenerative joint disease in young adulthood: a 21-year.
J. Ranstam  Osteoarthritis and Cartilage 
Baseline knee adduction and flexion moments during walking are both associated with 5 year cartilage changes in patients with medial knee osteoarthritis 
T2 texture index of cartilage can predict early symptomatic OA progression: data from the osteoarthritis initiative  K.L. Urish, M.G. Keffalas, J.R. Durkin,
H. Sadeghi, D.E.T. Shepherd, D.M. Espino  Osteoarthritis and Cartilage 
Utilization rates of hip arthroplasty in OECD countries
Reproducibility and sensitivity to change of a new method of computer measurement of joint space width in hip osteoarthritis. Performance of three radiographic.
Quantitative measurement of medial femoral knee cartilage volume – analysis of the OA Biomarkers Consortium FNIH Study cohort  L.F. Schaefer, M. Sury,
Who should have a joint replacement? A plea for more ‘phronesis’
Novel statistical methodology reveals that hip shape is associated with incident radiographic hip osteoarthritis among African American women  H. An,
B. G. Faber, D. Baird, C. L. Gregson, J. S. Gregory, R. J. Barr, R. M
Bone marrow lesions identified by MRI in knee osteoarthritis are associated with locally increased bone mineral density measured by QCT  T. Lowitz, O.
H.F. Hart, D.C. Ackland, M.G. Pandy, K.M. Crossley 
S. Kobayashi, E. Pappas, M. Fransen, K. Refshauge, M. Simic 
Cam impingement: defining the presence of a cam deformity by the alpha angle  R. Agricola, J.H. Waarsing, G.E. Thomas, A.J. Carr, M. Reijman, S.M.A. Bierma-Zeinstra,
3D modelling of the hip joint from clinical imaging data
Osteoarthritis year 2012 in review: biology
Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by directional fractal signature method  M.
B. C. Fleming, H. L. Oksendahl, W. A. Mehan, R. Portnoy, P. D
S. Reichenbach, P. Jüni, E. Nüesch, F. Frey, R. Ganz, M. Leunig 
M. E. Bowers, B. S. , N. Trinh, M. S. , G. A. Tung, M. D. , F. A. C. R
Total hip replacement but not clinical osteoarthritis can be predicted by the shape of the hip: a prospective cohort study (CHECK)  R. Agricola, M. Reijman,
M. Doherty, P. Dieppe  Osteoarthritis and Cartilage 
General Information Osteoarthritis and Cartilage
Presentation transcript:

Development of a fully automatic shape model matching (FASMM) system to derive statistical shape models from radiographs: application to the accurate capture and global representation of proximal femur shape  C. Lindner, S. Thiagarajah, J.M. Wilkinson, G.A. Wallis, T.F. Cootes  Osteoarthritis and Cartilage  Volume 21, Issue 10, Pages 1537-1544 (October 2013) DOI: 10.1016/j.joca.2013.08.008 Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Fully automatic segmentation of the proximal femur: Detecting the proximal femur in the image (left) and outlining its contour using 65 points (right). All anchor points are highlighted in red and were chosen to mark the following features: the beginning (point 3) and the end (point 10) of the lesser trochanter projected to the nearby femoral shaft contour, inflexion points at the inferior (point 17) and superior (point 38) femoral head–neck junction, the inferior (point 20) and superior (point 35) end of the hemispheric femoral head shape, the projected beginning of the trochanteric fossa (point 44) as well as local maxima at the superior contour of the greater trochanter (point 48) and at the inferior end of the greater trochanter (point 55). Note that these features are based on the visual appearance of the proximal femur in AP pelvic radiographs; this does not necessarily correspond with three-dimensional anatomical features. Osteoarthritis and Cartilage 2013 21, 1537-1544DOI: (10.1016/j.joca.2013.08.008) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Geometric measurements based on output of the FASMM system: FHD, FNAL, FNW, FNSA, AA. Note that the fully automatic calculation of these measurements is based on the blue contour points only whereas the fully automatic prediction uses an SSM that includes all 65 contour points. Osteoarthritis and Cartilage 2013 21, 1537-1544DOI: (10.1016/j.joca.2013.08.008) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Bland–Altman plots for manual measurements vs fully automatic measurements (cc = Pearson's correlation coefficient): These data show high correlation and less than 10% difference between the methods (red dotted line labelled ±2 SD, indicating limits of agreement between methods), and minimal bias (red dotted lines indicating 95% confidence interval (CI) of mean) for all but the alpha angle. Osteoarthritis and Cartilage 2013 21, 1537-1544DOI: (10.1016/j.joca.2013.08.008) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Bland–Altman plots for manual measurements vs prediction using linear regression based on shape model mode values (cc = Pearson's correlation coefficient): These data show high correlation and less than 10% difference between the methods (red dotted line labelled ±2 SD, indicating limits of agreement between methods), and minimal bias (red dotted lines indicating 95% CI of mean) for all but the alpha angle. Osteoarthritis and Cartilage 2013 21, 1537-1544DOI: (10.1016/j.joca.2013.08.008) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Shape differences between male () and female () proximal femur shape based on fully automatic search results for 1105 images, where differences from the mean () have been exaggerated by a factor of 3 to aid visualisation. Osteoarthritis and Cartilage 2013 21, 1537-1544DOI: (10.1016/j.joca.2013.08.008) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions