Enthalpy, Entropy and Gibbs Law of Free Energy

Slides:



Advertisements
Similar presentations
AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY
Advertisements

Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
 Section 1 – Thermochemistry  Section 2 – Driving Force of Reactions.
Chemical Thermodynamics Chapter 19 (except 19.7!).
CHEMISTRY Matter and Change
 Section 1 – Thermochemistry  Section 2 – Driving Force of Reactions.
Thermochemistry Study of energy transformations and transfers that accompany chemical and physical changes. Terminology System Surroundings Heat (q) transfer.
Spontaneous Reactions Proceed forward on their own without outside or external cause. Proceed forward on their own without outside or external cause. Certain.
Chapter 11 - Thermochemistry Heat and Chemical Change
Thermochemistry ENERGY CHANGES.. Energy is the capacity to do work Thermal energy is the energy associated with the random motion of atoms and molecules.
Thermochemistry Chapters 6 and11. TWO Trends in Nature ___________  _________  _____ energy  ____ energy 
Thermochemistry! AP Chapter 5. Temperature vs. Heat Temperature is the average kinetic energy of the particles in a substance. Heat is the energy that.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
 Section 1 – Thermochemistry  Section 2 – Driving Force of Reactions.
Thermodynamics Chapter 15. Part I Measuring Energy Changes.
Unit 7 Test Review. quantity of heat needed to raise the temperature of 1 g of water by 1 C calorie.
Chemical Energetics Created by S. Colgan; Modified by K. Slater
Chem10 Topic 01 - Thermochemistry Science 10 CT01D01.
Energy & Heat Energy – ability to produce heat Heat - energy in the process of flowing from a warmer object to a cooler object. In chemical reactions.
Thermochemistry Some Like It Hot!!!!!. The Flow of Energy ► Thermochemistry – concerned with heat changes that occur during chemical reactions ► Energy.
3 Enthalpy. Units SI unit = joule 1KJ = 1000J = cal 1st law of Thermodynamics The total energy of the universe is constant i.e energy cannot be.
Thermochemistry Exothermic process is any process that gives off heat – transfers thermal energy from the system to the surroundings. Endothermic process.
Chapter 11 Thermo chemistry Heat and Chemical Change The Flow of Energy – Heat Measuring and Expressing Heat Changes Heat in Changes of State Calculating.
Thermochemistry Chapters 6 and11 TWO Trends in Nature ____________  Disorder  ______ energy  ____ energy 
Chapter 15 Energy and Chemical Change Section 15.1 Energy Section 15.2Heat Section 15.3Thermochemical Equations Section 15.4 Calculating Enthalpy Change.
Welcome to Thermochemistry!. Energy in Chemistry Energy in Chemistry (11:23)  Energy is the ability to do work or produce heat. The sum of the potential.
Thermochemistry CHAPTER 17.
Exothermic and endothermic reactions Topic 5.1
Thermochemistry.
Concept 16 Thermodynamics
Unit 5 Energetics.
Thermodynamics Is it hot in here or what?.
HEAT IN CHEMICAL REACTIONS
Chapter Ten Energy Changes in Chemical Reactions
Thermochemistry Study of energy changes that occur during chemical reactions and changes in state.
Calorimetry This equation can be used to determine any of the variables here. You will not have to solve for C, since we will always assume that the energy.
Chemical Thermodynamics
Energy and Chemical Reactions
Thermochemistry Chapter 8.
Capacity to do work or to produce heat
Change in Energy.
Thermochemistry Chapter 10.
You must turn in your notes
Chapter 16 – Reaction Energy
Ch 16 Reaction Energy.
Heat in Reactions.
Thermodynamics Part 5 - Spontaneity.
Answer the following questions:
Thermochemistry CHAPTER 17.
Energetics Topic 5.1 – 5.2.
Thermochemistry.
CHEMISTRY Matter and Change
Thermodynamics The study of energy changes that accompany chemical and physical changes.
Flashcards for Unit 12.
Chapter 17 Energy Heat, Energy, and Temperature changes
Chapter 17 Thermochemistry
Flashcards for Unit 13.
Thermochemistry Unit 7.
Thermochemistry Chapter 6
Rate of Chemical Reactions Unit 3 AOS 2
Thermodynamics Lecture 1
Thermochemistry ENERGY CHANGES ..
Ch.17 Thermochemistry.
Thermochemistry Chapter 6
Thermochemistry Chapter 6
Reaction Kinetics and Equilibrium
Chapter 11 LA #1 driving forces
Thermochemistry Chapter 6
Presentation transcript:

Enthalpy, Entropy and Gibbs Law of Free Energy Dr Nadeem Asad 2-8-2014

Energy reactions Review the Energy Diagram Endothermic have a high startup energy Exothermic have a low start up energy

Heat and Temperature Heat is energy that is transferred from one object to another due to a difference in temperature Temperature is a measure of the average kinetic energy of a body Heat is always transferred from objects at a higher temperature to those at a lower temperature 3

Energy Curve Activation energy: energy required to get the reaction to move forward Energy released or absorbed is noted at the end of the curve

Factors that effect the Reaction Rate Temperature: Endothermic vs Exothermic reactions Concentration: Increase the reactants will increase the products Surface Area: Smaller particles have large surface area Catalysts and inhibitors

Delta H represents the transfer of heat Enthalpy Delta H = Hproducts - Hreactants Delta H represents the transfer of heat

Exothermic vs endothermic reactions Exothermic Reaction: A process that releases heat to its surroundings. Products have less energy than the reactants Endothermic Reaction : A process that absorbs heat from the surroundings. Products have more energy than the reactants.

2H2 (g) + O2 (g) 2H2O (l) + energy Exothermic process is any process that gives off heat – transfers thermal energy from the system to the surroundings. 2H2 (g) + O2 (g) 2H2O (l) + energy H2O (g) H2O (l) + energy Endothermic process is any process in which heat has to be supplied to the system from the surroundings. energy + H2O (s) H2O (l) energy + 2HgO (s) 2Hg (l) + O2 (g) 6.2

Combustion and neutralization processes Exothermic reaction General Combustion Reaction Formula: Compound (usually hydrocarbon) + O2  CO2 + H2O + energy CH4 + 2O2  CO2 + 2H2O + 890kJ ∆H = -890kJ Neutralization Acid + Base  Salt + Water + energy HCl + NaOH  NaCl + H2O + 57.3 kJ ∆H = -57.3kJ

Activation energy and enthalpy diagrams Exothermic Reactions Products more stable than reactants (lower energy). ΔH = Hproducts – Hreactants Since the products have less energy than the reactants, the ΔH value is negative. Endothermic Reactions Products less stable than reactants (higher energy) Since the products have more energy than the reactants, the ΔH value is positive. 10

DH = H (products) – H (reactants) Enthalpy (H) is used to quantify the heat flow into or out of a system in a process that occurs at constant pressure. DH = H (products) – H (reactants) DH = heat given off or absorbed during a reaction at constant pressure Hproducts < Hreactants Hproducts > Hreactants DH < 0 DH > 0 6.4

Standard enthalpy of reaction Standard Enthalpy Change of Reaction (∆H): The heat energy exchanged with the surroundings when a reaction happens under standard conditions (NOT STP… see below). Since the enthalpy change for any given reaction will vary with the conditions, esp. concentration of chemicals, ΔH are measured under standard conditions: pressure = 101.3 kPa temperature = 25ºC = 298 K Concentrations of 1 mol dm-3 The most thermodynamically stable allotrope (which in the case of carbon is graphite) Only ΔH can be measured, not H for the initial or final state of a system. 12

Terminology of rate of reaction (Δho) Pseudonyms (other names) for H Heat of Reaction: Hrxn heat produced in a chemical reaction Heat of Combustion: Hcomb heat produced by a combustion reaction Heat of Neutralization: heat produced in a neutralization reaction (when an acid and base are mixed to get water, pH = 7) Heat of solution: Hsol heat produced by when something dissolves Heat of Fusion: Hfus heat produced when something melts Heat of Vaporization: Hvap heat produced when something evaporates Heat of Sublimation: Hsub heat produced when something sublimes Heat of formation: Hf change in enthalpy that accompanies the formation of 1 mole of compound from it’s elements (this has special uses in chemistry…)

Spontaneous Reactions If the reaction moves forward as written without an intervention then the reaction is said to be spontaneous. Remember Delta H (enthalpy) Negative signs represent exothermic Always spontaneous Positive sign represents endothermic Sometimes spontaneous

Examples H2O (s) --> H2O (l) delta H = +6kJ 2Na(s) + Cl2 --> 2NaCl (s) delta H = -822kJ The above reactions are all spontaneous. But most endothermic rxn are Nonspontaneous.

Delta H Most enthalpy reactions that are endothermic rxn are not spontaneous. This is because the reaction has a high energy barrier. Only because of a large difference between entropy and enthalpy can the reaction happen.

Average bond enthalpy Enthalpy changes of reactions are the result of bonds breaking and new bonds being formed. Remember… Breaking bonds requires energy Forming new bonds releases energy Bond enthalpy is the energy required to break one mole of a certain type of bond in the gaseous state averaged across a variety of compounds. FYI: Bond enthalpies for unlike atoms will be affected by surrounding bonds and will be slightly different in different compounds so average bond enthalpies are used. 17

H = ∑ (energy required – ∑(energy released to break bonds) when bonds are formed) OR ∑ (bond enthalpy – ∑(bond enthalpy of reactants) of products)

Energy Changes in endothermic and exothermic processes In an endothermic reaction there is more energy required to break bonds than is released when bonds are formed. The opposite is true in an exothermic reaction. 19

Exothermic and endothermic reactions in light of average bond enthalpies If the amount of energy required to break the bonds in the reactants is greater than the amount of energy released when bonds are formed in the products, the reaction is endothermic. average bond enthalpy reactants > average bond enthalpy products If the amount of energy required to break the bonds in the reactants is less than the amount of energy released when bonds are formed in the products, the reaction is exothermic. average bond enthalpy reactants < average bond enthalpy products 20

Calorimetry Calorimetry involves the measurement of heat changes that occur in chemical processes or reactions. Determines the ΔH by measuring temp Δ's created from the rxn The heat change that occurs when a substance absorbs or releases energy is really a function of three quantities: The mass The temperature change The heat capacity of the material 21

Entropy Entropy is the measurement of disorder of particles in a reaction. Equation: Delta S = SProduct - Sreactant *not easy to measure, but we can compare based on the states of matter

Comparing Entropy Sproduct > Sreactants delta S is positive Sproduct< Sreactants delta S is negative Solids have a very low entropy Liquids have a slightly higher entropy Gases have a very high entropy

Example reactions CO2 (s) --> CO2 (g) S > 0 H2O (g) --> H2O (s) S<0 2NH3(g) --> N2(g) + 2 H2 (g) S>0

Suniverse = Sreaction + Ssurroundings Law of Thermodynamics States: in any spontaneous process, the overal entropy of the universe always increases. Suniverse = Sreaction + Ssurroundings

Law of Thermodynamics Sreaction - calculated using the states of matter Ssurround - calculated based on enthalpy If the reaction is endothermic it is taking energy away from the surrounding making it negative If the reaction is exothermic it is placing energy into the system and making it positive.

Gibbs Free Energy Delta G = Delta H - T deltaS Compares entropy, enthalpy and temperature * If delta G is negative the reaction is spontaneous * If delta G is positive the reaction is nonspontaneous * If delta G is 0 the reaction is at equilibrium