مدیریت داده ها و اطلاعات آزمایشگاه پزشکی

Slides:



Advertisements
Similar presentations
Yuma Pacific-Southwest Section, AIHA
Advertisements

Bakheet Aldosari, Ph.D. Health 305 Health Information Management Bakheet Aldosari, Ph.D.
Quality Data for a Healthy Nation by Mary H. Stanfill, RHIA, CCS, CCS-P.
AOC Services EPA Analytical Operations/Data Quality Center August 14 th, 2001 US Navy/NAVSEA Training Session.
Overview Clinical Documentation & Revenue Management: Capturing the Services Prepared and Presented by Linda Hagen and Mae Regalado.
Validata Release Coordinator Accelerated application delivery through automated end-to-end release management.
Laboratory Personnel Dr/Ehsan Moahmen Rizk.
Dr Samah Kotb Lecturer of Biochemistry 1 CLS 432 Dr. Samah Kotb Nasr El-deen Biochemistry Clinical practice CLS 432 Dr. Samah Kotb Nasr.
Chapter 3 Database Management
ICU Clinical Information Management System An Investigation for a Pediatric Intensive Care Unit Steven Sousa Ann Thompson.
This teaching material has been made freely available by the KEMRI-Wellcome Trust (Kilifi, Kenya). You can freely download, adapt, and distribute this.
1 Introduction Introduction to database systems Database Management Systems (DBMS) Type of Databases Database Design Database Design Considerations.
Laboratory Information Management Systems. Laboratory Information The sole product of any laboratory, serving any purpose, in any industry, is information.
August 12, Meaningful Use *** UDOH Informatics Brown Bag Robert T Rolfs, MD, MPH.
Chapter 7 Database Auditing Models
Development Principles PHIN advances the use of standard vocabularies by working with Standards Development Organizations to ensure that public health.
Chapter 1 Database Systems. Good decisions require good information derived from raw facts Data is managed most efficiently when stored in a database.
JumpStart the Regulatory Review: Applying the Right Tools at the Right Time to the Right Audience Lilliam Rosario, Ph.D. Director Office of Computational.
Improving Data Quality and Quality Assurance in Newborn Screening by Including the Bloodspot Screening Collection Device Serial Number on Birth Certificates.
AGENDA Welcome and introductions Brief introduction to PSI Mobile Technical Overview Demonstration Q and A Next Actions.
Chapter 6: Foundations of Business Intelligence - Databases and Information Management Dr. Andrew P. Ciganek, Ph.D.
Chapter 7: Database Systems Succeeding with Technology: Second Edition.
UNIT 5 SEMINAR.  According to your text, in an acute care setting, an electronic health record integrates electronic data from multiple clinical systems.
Database Security and Auditing: Protecting Data Integrity and Accessibility Chapter 7 Database Auditing Models.
Discovering Computers Fundamentals Fifth Edition Chapter 9 Database Management.
Quality Control and Patient Risk Curtis A. Parvin, Ph. D
Multimodal User Interface with Natural Language Classification for Clinicians At Point of Care Health Informatics Showcase Peter Budd Sponsors: NCCH -
Unit 18 Advanced Database Design
Biochemistry Clinical practice CLS 432 Dr. Samah Kotb Lecturer of Biochemistry 2015 Introduction to Quality Control.
Hospital Management System - HMS
Foundations of Information Systems in Business. System ® System  A system is an interrelated set of business procedures used within one business unit.
Unit 17: SDLC. Systems Development Life Cycle Five Major Phases Plus Documentation throughout Plus Evaluation…
1 Chapter 2 Database Environment Pearson Education © 2009.
Module 13: Information Systems The increasingly heavy reliance on healthcare informatics for medical technology, care systems, financial management, and.
Database Systems: Design, Implementation, and Management Eighth Edition Chapter 1 Database Systems.
Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved. Handbook of Informatics for Nurses and Healthcare.
Accurate  Consistent  Compliant Contact: i4i the structured content company the structured content company.
Levey Jennings Chart Activity Staff Meeting Topic.
Developing, Pilot Testing & Evaluating RiskMAP Interventions Annette Stemhagen, DrPH, FISPE Vice President UBC Epidemiology & Risk Management The FDA Regulatory.
Monsour Roi M. Monzon, RN.  What is Electronic Health Record?  Electronic Medical Record (EMR) vs Electronic Health Record (EHR)  Comparison with Paper-based.
NEMSIS Version2  NEMSIS Version 3. Purpose of NEMSIS Version 3 Improve Data Quality  –Schematron Enhance performance assessment  – Incorporation of.
Database Principles: Fundamentals of Design, Implementation, and Management Chapter 1 The Database Approach.
© 2016 Chapter 6 Data Management Health Information Management Technology: An Applied Approach.
Tim Friede Department of Medical Statistics
KEEPS – a system for UELMA preservation and security
Functional EHR Systems
The Role of LIMS in Improving Laboratory services at NPHL, Kenya
Laboratory Information Management Systems (LIMS)
ICAO Seminar on Aeronautical spectrum management (Cairo, 7 – 17 June 2006) SAFIRE Spectrum and Frequency Information Resource (presented by Eurocontrol)
QUALITY MANAGEMENT Suzanne Kamel-Mohamed PhD, MBA, MT (ASCP) Associate
Unit 5 Systems Integration and Interoperability
Modern Systems Analysis and Design Third Edition
Background and Rationale for the development of the Primary Health Care (PHC) Laboratory Toolkit
Managing Clinical Information: EHR Terms and Architecture
Database Management System (DBMS)
ICAO Seminar on Aeronautical spectrum management (Cairo, 7 – 17 June 2006) SAFIRE Spectrum and Frequency Information Resource (presented by Eurocontrol)
Chapter 1 Database Systems
Database Vs. Data Warehouse
Functional EHR Systems
Data Sharing Strategies and Benefits
Metadata in the modernization of statistical production at Statistics Canada Carmen Greenough June 2, 2014.
Presented by: Cynthia Paes, Privacy Officer County of San Diego
Database (DB) and Database Management System (DBMS)
Chapter 1 Database Systems
OpenELIS Global An open source Enterprise Laboratory Information System for Global Health Casey Iiams-Hauser, MIA Dec 2018 Photo (bottom right) courtesy.
FDA Sentinel Initiative
Quality Control Lecture 3
Ensuring the Quality and Best Use of Information
TRINITY UNIVERSITY HOSPITAL
HLN Consulting, LLC® November 8, 2006
Presentation transcript:

مدیریت داده ها و اطلاعات آزمایشگاه پزشکی آزمایشگاه مرجع سلامت معاونت درمان وزارت بهداشت درمان و آموزش پزشکی

Laboratory Information Management System(LIMS) A laboratory information management system (LIMS), sometimes referred to as a laboratory information system(LIS) or laboratory management system (LMS), is a software-based laboratory and information management system with features that support a modern laboratory's operations.

حوزه های اصلی در جمع آوری اطلاعات آزمایشگاهها عبارت است از: مدیریت قرارداد ها و کمک هزینه ها آموزش و مدیریت منابع گواهی ها و مجوزهای آزمایشگاه مدیریت امور مراجعین/مشتریان مدیریت کنترل کیفیت و تضمین کیفیت مدیریت ایمنی و تحقیق در مورد حوادث کاری پشتیبانی متقابل سایر آزمایشگاهها و جبران خسارات و نواقص در فوریتها و بلاها خدمات متمرکز تکنولوژی اطلاعات از قبیل سخت افزار، نرم افزار و سایر خدمات سیاستها و اقدامات اجرایی مختلف از قبیل بودجه و تامین منابع مالی درخواست آزمایش و دریافت نمونه آماده سازی برای انجام آزمایش، روند و فرآیند نرم افزاری مدیریت اطلاعات آزمایشگاهی، ثبت نتایج و تائید آن آماده سازی و توزیع گزارش نتایج آزمایشگاهی برنامه ریزی و زمانبندی برای انجام آزمایش انجام آزمایشها بر اساس برنامه زمانبندی رهیابی و ردیابی نمونه ها تولید و انبارش موجودی کیتها، شناساگرها، کنترلها و ... قابلیت همکاری و تبادل داده ها تجزیه و آماری و نظام مراقبت تهیه صورتحساب خدمات آزمایشگاهی

Specific suggestions for improving the function of LIS are listed under the following sections: The Ideal Laboratory Information System Jorge L. Sepulveda, MD, PhD; Donald S. Young, MD, PhD, Arch Pathol Lab Med—Vol 137, August 2013 Information Security, Test Ordering, Specimen Collection, Accessioning, and Processing, Analytic Phase, Result Entry and Validation, Result Reporting, Notification Management, Data Mining and Cross-sectional Reports, Method Validation, Quality Management, Administrative and Financial Issues, and Other Operational Issues

Modules contributing to the ideal laboratory information system

Information Security Health care information systems must be secured from unauthorized internal and external access and preserve the confidentiality of health records according to applicable law and regulations without hindering the functionality for legitimate users.

Test Ordering Test ordering is the step most amenable to intervention in order to improve appropriate use of laboratory resources (laboratory utilization).

Specimen Collection, Accessioning, and Processing Appropriate specimen collection and processing is fundamental to the quality of laboratory results, which follow the well-know principle of ‘‘garbage in, garbage out.’’ An ideal LIS should have functionalities to optimize specimen collection and processing

Analytic Phase The analytic phase has been the focus of most technologic developments in clinical Laboratory science and is typically associated with the lowest frequency of errors in the clinical laboratory.

Result Entry and Validation The LIS should not only serve as a repository of laboratory results generated by the analytic process, but also guide the analysts into providing high-quality results that are accurate, reproducible, and appropriate to the clinical situation

Result Reporting The system should be able to provide a variety of reports for use in patient care, including standard and user definable reports organized by test, test group, date, date range, ordering provider or provider group, clinic or specialty, sequential or tabulated cumulative worksheets, and additional capabilities.

Notification Management Distribution of results to end users should be defined by a combination of institutional policy for certain results (such as ‘‘critical results’’) and user-selected notification mechanisms (eg, printout, fax, e-mail, HIS alert) for routine reports. A rule-based system should be used to select the appropriate mechanism and timing for user notification

Data Mining and Cross-sectional Reports The ability to perform queries into the laboratory and clinical databases is paramount to maximize the efficiency and quality of the laboratory operation, provide means of identifying clinical issues affecting a specified population, perform epidemiologic and public health studies, and case finding for clinical or research purposes. Advanced data warehouse and mining capabilities should be available in an advanced LIS.

Method Validation Method validation is an important step preceding implementation of new assays in the clinical laboratory and is performed periodically in a more summarized mode to ensure the stability of the assay systems and compliance with regulatory and accrediting agencies

Quality Management In the current health care financing environment, institutions are increasingly focusing on improved quality and outcomes of patient care to enhance their financial situation and gain competitive advantages. Quality management for clinical laboratories involves a program to ensure quality throughout all the aspects of laboratory operation. More strictly, quality control (QC) refers to periodic assaying of samples with known reactivity or analyte concentrations to estimate assay accuracy and precision. A modern QC program should aim at Improving the accuracy and reliability of laboratory results by maximizing error detection and minimizing false rejections of test runs.

Administrative and Financial Issues Management of a modern laboratory requires access to a variety of data at various levels of consolidation. The LIS should incorporate advanced administrative and financial functionalities

Other Operational Issues Enough capacity to record large datasets and interface with legacy systems (in real time or through import functions) to capture historical laboratory data, with the goal of storing lifelong results on each patient. The system should capture industry standards for coding, billing, document generation, and interface formats, such as CDC, HL7 CDA1/2, XML, ASC X12, LOINC, SNOMED-CT, ICD-9, or ICD-10, as appropriate for each data type The system should minimize the number of keystrokes required for all activities (use automatic return where possible). Fully functional text editor in text entry fields with rich text and common word-processing functionalities. Appropriate backup data capture and retention with rapid retrieval in the event of system failure. The LIS should be capable of performing multiple functions simultaneously with imperceptible impact on its speed.

هدف اختصاصی: ایجاد نظام یکپارچه ثبت اطلاعات آزمایشگاهی ایجاد شبکه اطلاعات آزمایشگاه پزشکی الکترونیکی: استقرار سیستم جمع آوری اطلاعات وایجاد زیر ساخت لازم مطابق با سرفصلها و استانداردهای ارائه شده توسط آزمایشگاه مرجع سلامت گرد آوری اطلاعات و داده های آزمایشگاهی با تاکید بر جمع آوری حداقل داده های مورد نیاز توسط دانشگاهها انجام گرفته و برنامه ریزی جهت جمع آوری اطلاعات از طریق سیستم یکپارچه اطلاعات(LIS) و ایجاد بستر جمع آوری اطلاعات در پایگاه اطلاعات جهت دستیابی به نظام یکپارچه. تحلیل و مدیریت داده ها: امکان گزارش گیری و ایجاد سطوح کاربری مختلف جهت استفاده بهینه و به هنگام از آمار و اطلاعات آزمایشگاهی

هدف راهبردی: حصول اطمینان از اعتبار داده ها و اطلاعات آزمایشگاههای پزشکی ممیزی و پایش از آزمایشگاه های تحت پوشش پایش و ممیزی ادواری جهت حصول اطمینان از صحت و سقم داده های وارد شده در سیستم اطلاعات آزمایشگاهی تعامل با سازمان های بیمه گر اقدام اصلاحی برنامه ریزی جهت بازخورد اقدامات اصلاحی مورد نیاز تامین منابع مالی تامین منابع مالی مدیریت هزینه اثربخشی جهت استفاده بهینه

هدف راهبردی: تکمیل و روزآمد کردن اطلاعات شبکه آزمایشگاههای دانشگاهی و استفاده بهینه از آمار عملکرد آزمایشگاهها جهت بهبود میزان اثربخشی خدمات آزمایشگاهی الزام آزمایشگاه های تحت پوشش به منظور بروز رسانی اطلاعات بازنگری ادواری به صورت 6 ماهه اصلاح اطلاعات تغییر یافته

mohamadzadeh@health.gov.ir samieai@health.gov.ir