Transition Wakes in the 3.9 GHz Cryomodule

Slides:



Advertisements
Similar presentations
S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super.
Advertisements

ERHIC Main Linac Design E. Pozdeyev + eRHIC team BNL.
Design of Standing-Wave Accelerator Structure
DESIGN OF A 7-CELLS, HOM DAMPED, SUPERCONDUCTING CAVITY FOR THE STRONG RF FOCUSING EXPERIMENT AT DANE David Alesini, Caterina Biscari, Roberto Boni, Alessandro.
Alignment and assembling of the cryomodule Yun He, James Sears, Matthias Liepe MLC external review October 03, 2012.
Dark Current Measurements and Simulations Chris Adolphsen 2/4/15.
SRF Results and Requirements Internal MLC Review Matthias Liepe1.
Low Impedance Bellows for High Current SRF Accelerators
Impedance and Collective Effects in BAPS Na Wang Institute of High Energy Physics USR workshop, Huairou, China, Oct. 30, 2012.
Status of the Fermilab Cold BPM R&D Manfred Wendt Fermilab 10/1/20091LCWA09 Main Linac WG.
1 C. Simon CLIC Instrumentation workshop BPM C. Simon on behalf of the Saclay’s group CLIC Instrumentation workshop 2 nd - 3 rd June.
Cryomodule prototype Yun He, Dan Sabol, Joe Conway On behalf of Matthias Liepe, Eric Smith, James Sears, Peter Quigley, Tim O’Connell, Ralf Eichhorn, Georg.
Study of absorber effectiveness in ILC cavities K. Bane, C. Nantista, C. Adolphsen 12 October 2010.
Study of Absorber Effectiveness in the ILC Main Linacs K. Bane, C. Nantista and C. Adolphsen SLAC, March 26, 2010 Goal: Compute the HOM monopole losses.
26-October-2006 PEP-II MAC Session HOM measurement and analysis S. Weathersby, A. Novokhatski HOMs in LER region 4: overview, history Collimator wake fields.
Wakefields in XFEL undulator intersections Igor Zagorodnov Beam Dynamics Group Meeting
KEK R&D for LHC Plan of 800MHz Cavity Calculation of 400MHz Cavity 16 th September 2009, LHC-CC09 at CERN K.Nakanishi.
CLARA Gun Cavity Optimisation NVEC 05/06/2014 P. Goudket G. Burt, L. Cowie, J. McKenzie, B. Militsyn.
Simulation of trapped modes in LHC collimator A.Grudiev.
PBG Structure Experiments, AAC 2008 Photonic Bandgap Accelerator Experiments Roark A. Marsh, Michael A. Shapiro, Richard J. Temkin Massachusetts Institute.
56 MHz SRF Cavity Thermal Analysis and Vacuum Chamber Strength C. Pai
Sensitivity of HOM Frequency in the ESS Medium Beta Cavity Aaron Farricker.
Trapped Modes in LHC Collimator (II) Liling Xiao Advanced Computations Department SLAC National Accelerator Laboratory.
SKEKB Mini Work SKEKB Vacuum System – Arc Section – Contents Y.Suetsugu KEKB Vacuum Group 1.Beam Chambers 2.Pumps: Pump, Pressure,
Cryomodule prototype Yun He, Dan Sabol, Joe Conway On behalf of Matthias Liepe, Eric Smith, James Sears, Peter Quigley, Tim O’Connell, Ralf Eichhorn, Georg.
Impedance Budget Database Olga Zagorodnova BD meeting, DESY.
Coupler Short-Range Wakefield Kicks Karl Bane and Igor Zagorodnov Wake Fest 07, 11 December 2007 Thanks to M. Dohlus; and to Z. Li, and other participants.
Long Range Wake Potential of BPM in Undulator Section Igor Zagorodnov and Martin Dohlus Beam Dynamics Group Meeting
TWO-BEAM, MULTI-MODE, DETUNED ACCSELERATING STRUCTURE S.Kazakov 1,2, S.Kuzikov 3, V.Yakovlev 4 J.L. Hirshfield 1,5, 1 Omega-p,Inc., 199 Whitney Ave., New.
Alignment and assembling of the cryomodule Yun He, James Sears, Matthias Liepe.
BEAMLINE HOM ABSORBER O. Nezhevenko, S. Nagaitsev, N. Solyak, V. Yakovlev Fermi National Laboratory December 11, 2007 Wake Fest 07 - ILC wakefield workshop.
LHC Cryostat evaluation Nikolay Solyak Thanks Rama Calaga, Tom Peterson, Slava Yakovlev, Ivan Gonin C11 workshop. FNAL, Oct 27-28, 2008.
TESLA DAMPING RING RF DEFLECTORS DESIGN F.Marcellini & D. Alesini.
MAIN LINAC CRYOMODULE DESIGN REVIEW INPUT COUPLER September 5, 2012V. Veshcherevich.
H. Yamamoto IRENG07 1 Heating of IR region Image current HOM heating ‘GLD’ IR.
Marcel Schuh CERN-BE-RF-LR CH-1211 Genève 23, Switzerland 3rd SPL Collaboration Meeting at CERN on November 11-13, 2009 Higher.
Status of work on the HOM coupler. 2 nd Harmonic cavity Meeting 11/II-2016 Thermal analyses with shims (Y.Terechkine). Gennady Romanov On behalf of Y.Terechkine.
Ralf Eichhorn CLASSE, Cornell University. I will not talk about: Cavities (Nick and Sam did this) HOM absorbers (did that yesterday) Power couplers (see.
2008/12/10 INFN R&D on Low Impedance Beam Chamber and Components Y. Suetsugu, for KEKB Vacuum Group Contents Introduction Beam Chamber Components Connection.
LCLS-II Optics Release: 26FEB16. What’s new in this release? new cathode-to-L0 (“GUNB”) layout ˃input Twiss from Feng Zhou’s 100 pC beam updated cryomodule.
Dark Current in ILC Main Linac N.Solyak, A.Sukhanov, I.Tropin ALCW2015, Apr.23, 2015, KEK LCWS'15, Tsukuba, 04/2015Nikolay Solyak1.
Engineering of the power prototype of the ESRF HOM damped cavity* V. Serrière, J. Jacob, A. Triantafyllou, A.K. Bandyopadhyay, L. Goirand, B. Ogier * This.
Review of Alignment Tolerances for LCLS-II SC Linac Arun Saini, N. Solyak Fermilab 27 th April 2016, LCLS-II Accelerator Physics Meeting.
LCLS-II 3 rd Harmonic Dressed Cavity Design Review Chuck Grimm November 20, 2015.
The Evolving ILC Project
The Cockcroft Institute and The University of Manchester
Correlated Misalignments Studies for LCLS-II SC Linac
XFEL beamline loads and HOM coupler for CW
T. Agoh (KEK) Introduction CSR emitted in wiggler
CLIC Main Linac Cavity BPM Snapshot of the work in progress
MDI: Trapped modes and other power losses
WP10.5: HOM Distribution Task 2 – Presentation 2.
Wideband, solid-state driven RF systems for PSB and PS longitudinal damper.
HOM power in FCC-ee cavities
CTF3 kicker activities at CIEMAT
Wakefield simulations for ILC cavity
Electron cloud and collective effects in the FCC-ee Interaction Region
Update on PS Longitudinal Impedance Model
Work summary in 2016 Hongjuan Zheng CEPC SRF WG Meeting
Update of CLIC accelerating structure design
Igor Zagorodnov and Martin Dohlus
Overview Multi Bunch Beam Dynamics at XFEL
RF modes for plasma processing
Simulation of trapped modes in LHC collimator
CEPC Main Ring Cavity Design with HOM Couplers
Beamline Absorber Study Using T3P
Status of HOMS Spectra Measurements in 1.3 GHz Cavities for LCLS-II
SPS-DQW HOM Measurements
Cryomodule Design for CW Operation 3.9 GHz considerations
Short-Range Wakes in Elliptical Pipe Geometry
Presentation transcript:

Transition Wakes in the 3.9 GHz Cryomodule Andrei Lunin, Arun Saini, Nikolay Solyak 11 July 2016

Geometry of the LCLS-II 3.9 GHz Cryomodule LCLS-II 3.9 GHz CM Wake 11/18/2018

CM in L0, with cryogens feed cap and end cap (FC1) Presenter | Presentation Title 11/18/2018

Differential Pumping system (LCLSII-1.1-EN-0658) Ltot=1.2m Ø 34.8 mm 320 mm 490 mm Ltot=2.14 m Ø 34.8 mm 440 mm 440 mm MADDECK file FC-3 CAVC028 cavity #8 center 115.18739 3917.0   CMBH2 BPM 115.68376 4413.39 CMH2END manual gate valve d/s flange face 115.84825 4577.88 FC3 FC-3 feed cap feed cap plate face 117.60357 6333.20 beamline flange 117.69247 MSC1D MSC space d/s end 119.43257 1.8290 PSC1D differential pumping space 121.33862 1.9060 ENDL1B end of L1B linac Diff Pump Length of SS pipe pipe ~3.73m (we use 2.5m) Presenter | Presentation Title 11/18/2018

End Cups EC-D EC-U Presenter | Presentation Title 11/18/2018

FC6 (F10040900) FC2, FC4 (F10040671) FC1 (F10040670) FC3,5 (F10040895) Presenter | Presentation Title 11/18/2018

Wakefield simulation summary (ECHO-2D) Loss-factor in 3.9 GHz Cryomodule (V/pC) Bunch length (sigma) 0.5mm 1mm 2mm 8 x Cavities only - 113.9 8x (Cavities + bellow) 135.5 All elements but gaps 142.7 Full CM geometry with gaps 204.9 150.4 105.5 CM with gaps + extra bellow 205.2 151.64 107.2 CM with long spool transition 148.3 CM_ 78mm spool-piece 151.58 Wakefield power, generated by 300µA; σ=1mm beam is 13.65 W per 3.9GHz CM, and only 9.4 W above beam pipe cut-off frequency (the rest will be in cavity as beam loading) Presenter | Presentation Title 11/18/2018

Wake Functions of LCLS-II 3.9 GHz Cryomodule Longitudinal wake functions of a point like charge* 𝑤 ∥ 0 𝑠 =−𝐻 𝑠 𝐴 𝑒 − 𝑠/ 𝑠 0 +0.9 cos⁡(5830 𝑠 0.83 ) 𝑠 +195𝑠 +𝐵𝛿(𝑠) , [V/pC] s0= 8.4*10-4 , A = 784, B= 1098 * I. Zagorodnov, T. Weiland, “Wake Fields Generated by the LOLA-IV Structure and the 3rd Harmonic Section in TTF-II”, TESLA Report 2004-1 LCLS-II 3.9 GHz CM Wake 11/18/2018

Wake Potential of LCLS-II 3.9 GHz Cryomodule Longitudinal wake potential of Gaussian bunch σz= 1 mm* 𝑞 𝑠 = 1 2𝜋 𝜎 𝑧 𝑒 − 𝑠 2 2 𝜎 𝑧 𝑊 ∥ 0 (𝑠)= 1 𝑄 −∞ 𝑠 𝑤 ∥ 0 𝑠− 𝑠 ′ 𝑞 𝑠 ′ 𝑑 𝑠 ′ 𝑘 ∥ = 1 𝑄 −∞ ∞ 𝑊 ∥ 0 (𝑠)𝑞 𝑠 𝑑𝑠 * Coefficients of the wake function are adjusted for best fit with numerical (ECHO 2D) wake simulation in the 3.9 GHz LCLS-II cryomodule LCLS-II 3.9 GHz CM Wake 11/18/2018

Wake Power Spectrum of 1.3&3.9 GHz LCLS-II Cryomodules 𝒅𝑷 𝒅𝝎 = 𝒒 𝟎 𝟐 𝒇 𝒃 𝒁 ∥ 𝒆 − 𝝎 𝝈 𝒛 𝒄 𝟐 𝒁 ∥ = 𝟏 𝝅𝒄 𝑹𝒆( 𝟎 ∞ 𝒘 ∥ 𝟎 𝒔 𝒆 − 𝒊𝝎𝒔 𝒄 𝒅𝒔) q0= 300 pC , fb = 1 MHz , σz= 1 mm 𝑃 𝑇𝑀01 =8 1 4 R Q 𝜔 𝑞 0 2 𝑓 𝑏 ≅ 0 𝜔 𝑐 𝒅𝑷 𝒅𝝎 𝑑𝜔 Wakes below the beam pipe cut-off frequency is deposited to the operating modes! LCLS-II 3.9 GHz CM Wake 11/18/2018

Integrated Wake Power in 1.3&3.9 GHz LCLS-II Cryomodules max 9.4 W/CM max 12.8 W/CM q0= 300 pC , fb = 1 MHz , σz= 1 mm 𝑃(𝜔)= 𝑞 0 2 𝑓 𝑏 𝜔 𝑐𝑢𝑡𝑜𝑓𝑓 𝜔 𝑍 ∥ 𝑒 − 𝜔 𝜎 𝑧 𝑐 2 𝑑𝜔 Propagating wake power: LCLS-II 3.9 GHz CM Wake 11/18/2018

Wake Power Deposition (Transition Model) Pinp TM01 Prad A single monopole mode at the input is almost equally mixed up with others propagating TM0n modes after a transmission through the cavity ! LCLS-II 3.9 GHz CM Wake 11/18/2018

Wake Power Deposition (Transition Model) dP/df, [W/GHz] F, [GHz] TM01 TM02 TM03 Total Wake F, [GHz] P, [W] Wake Monopole TM-modes Decomposition: 𝐏 𝒇 = 𝒏=𝟏 𝑵( 𝒇𝒄 𝒏 ) 𝑷_𝑻𝑴 𝟎𝒏 𝑵( 𝒇𝒄 𝒏 ) , where N(fcn) is number oTM0n modes below the cut off frequency Transition model approaches wake power deposition by a direct calculation of monopole modes transitions through beam line components (BLA, FPC, HOMC, Gate Valves): 𝑃≈ 𝑛=1 𝑁 𝑓 𝑐 ∞ 𝑑 𝑃 𝑇𝑀 0𝑛 𝑑𝑓 (1− 𝑆 12 2 )𝑑𝑓 LCLS-II 3.9 GHz CM Wake 11/18/2018

Beam Line Absorber properties 𝜀.𝑟𝑒 𝑓 ≈73 𝑒 −0.66 𝑓 0.25 tan ∆ =0.4=𝑐𝑜𝑛𝑠𝑡 LCLS-II 3.9 GHz CM Wake 11/18/2018

Wake transmission (single pass) through beam line components BLA wake loss is ~ 42% FPC wake loss is ~ 20% BLA FPC HFSS Driven Modal (20 GHz) Prad Pinp TM01 Pinp TM01 LCLS-II 3.9 GHz CM Wake 11/18/2018

Wake Power Deposition (Transition Model) Wake transmission (single pass) through beam line components HOMC Gate Valve Prad HFSS Driven Modal (20 GHz) Prad Pinp TM01 Pinp TM01 HOMC wake loss is ~ 1.6% Gate Valve wake loss is ~ 2.7% LCLS-II 3.9 GHz CM Wake 11/18/2018

Wake Power Deposition (Transition Model) Wake transmission (single pass) through beam line components 9-cell structure End Pipe (Ø 32mm) HFSS Driven Modal (20 GHz) Pinp TM01 Prad Pinp TM01 Prad wake radiation is ~ 41% wake transmission is ~ 50% LCLS-II 3.9 GHz CM Wake 11/18/2018

Wake Power Deposition (Diffusion Model) TM-mode Loss in the Circular Pipe: dPn (ω) = 𝑷 𝟎 (𝟏− 𝒆 −𝟐𝜶𝒏𝒍 ) 𝜶 𝒏 (𝝎)= 𝒁(𝝎) 𝒁 𝟎 𝒓 𝟏− 𝝎𝒄 𝒏 𝝎 𝟐 −𝟏 HFSS Simulations 𝐝𝐏 𝝎 = 𝒏=𝟏 𝑵 𝝎𝒄 𝒏 𝒅𝑷 𝒏 (𝝎) 2𝜋𝑟 𝑙 𝑛 = 𝑆 𝑛 where, Sn is the area of lossy (radiating) surface and ln is the length of a beam pipe with an equivalent impedance Z(ω) We can derive the equivalent surface impedance Z(ω) for beam line components ! LCLS-II 3.9 GHz CM Wake 11/18/2018

Wake Power Deposition (Diffusion Model) Impedances of Beam Line Components LCLS-II 3.9 GHz CM Wake 11/18/2018

Wake Power Deposition (Diffusion Model) 3rd harmonic section Variant A CM1 CM2 BLA SS Beam Pipe (L=2.5m) Variant B CM1 CM2 BLA BLA BLA SS Beam Pipe (L=2.5m) Each CM contains: 9 bellows, 1 spool pipe, 2 gate valves, 16 HOMC, 8 FPC Diffusion Model Approaches: 1. Wake power is uniformly distributed and fully absorbed within the section. 2. Power deposition is proportional to the surface impedance and the surface area LCLS-II 3.9 GHz CM Wake 11/18/2018

Wake Power Deposition (Transition Model) 3rd harmonic section Variant A open CM1 CM2 BLA2 BLA1 SS Beam Pipe (L=2.5m) Power radiated from single CM (to each side): 𝑃𝐶𝑀 𝑟𝑎𝑑 ≈ 𝑃 0 16 𝑖=1 8 1− 𝑆𝑃 𝐹𝑃𝐶 + 2×𝑆𝑃 𝐻𝑂𝑀 + 𝑆𝑃 𝐵𝐸𝐿𝐿𝑂𝑊𝑆 𝑖 =1.7 𝑊 where SP is a single pass wake loss in the FPC, HOMC and bellows Power absorbed in CM: 𝑃𝐶𝑀 𝑙𝑜𝑠𝑠 = 𝑃 𝑤𝑎𝑘𝑒 − 2×𝑃𝐶𝑀 𝒓𝒂𝑑 =6.0 [𝑊] Power absorbed in BLA: 𝑃 𝐵𝐿𝐴1 ≈ (𝑃𝐶𝑀 𝑟𝑎𝑑 − 𝑃 𝐺𝑉1 )×0.42=0.7 [𝑊] 𝑃 𝐵𝐿𝐴2 ≈2 (𝑃 𝐵𝐿𝐴1 + 𝑃𝐶𝑀 𝑟𝑎𝑑 − 𝑃 𝐵𝐿𝐴1 − 𝑃 𝐺𝑉2 ∗0.5∗0.42+…)=1.9 [𝑊] Power radiated to Gate Valves: 𝑃 𝐺𝑉1 = 𝑃 𝐺𝑉4 ≈ 𝑃𝐶𝑀 𝑟𝑎𝑑 ×2×0.027=0.09 [𝑊] 𝑃 𝐺𝑉2 = 𝑃 𝐺𝑉3 ≈2∗ 𝑃 𝐺𝑉1 =0.18 [𝑊] LCLS-II 3.9 GHz CM Wake 11/18/2018

Wake Power Deposition (Transition Model) 3rd harmonic section Variant A open CM1 CM2 BLA2 BLA1 SS Beam Pipe (L=2.5m) Power absorbed in bellows: 𝑃 𝐵𝐸𝐿𝐿 ≈0.007 [𝑊] Power radiated to FPC: 𝑃 𝐹𝑃𝐶 ≈0.75 [𝑊] Power radiated to HOMC: 𝑃 𝐻𝑂𝑀𝐶 ≈0.05 [𝑊] Power absorbed in 2.5 m SS Beam Pipe (1st pass & 2nd pass): 𝑃 𝑆𝑆1 ≈ (𝑃𝐶𝑀 𝑟𝑎𝑑 − 𝑃 𝐺𝑉1 )∗0.11=0.18 [𝑊] 𝑃 𝑆𝑆2 ≈ (𝑃𝐶𝑀 𝑟𝑎𝑑 − 𝑃 𝐺𝑉1 −𝑃 𝑆𝑆1 − 𝑃 𝐸𝑁𝐷2 )∗0.11=0.1 [𝑊] Power radiated to Beam Line: 𝑃 𝑈𝑃 ≈ (𝑃𝐶𝑀 𝑟𝑎𝑑 − 𝑃 𝐺𝑉1 − 𝑃 𝐵𝐿𝐴1 )=0.9 [𝑊] 𝑃 𝐷𝑂𝑊𝑁1 ≈ (𝑃𝐶𝑀 𝑟𝑎𝑑 − 𝑃 𝐺𝑉4 − 𝑃 𝑆𝑆1 )∗0.41=0.6 [𝑊] 𝑃 𝐷𝑂𝑊𝑁2 ≈ (𝑃𝐶𝑀 𝑟𝑎𝑑 − 𝑃 𝐺𝑉4 − 𝑃 𝑆𝑆1 − 𝑃 𝐷𝑂𝑊𝑁1 − 𝑃 𝑆𝑆2 − 2𝑃 𝐺𝑉4 )∗0.41=0.3 [𝑊] LCLS-II 3.9 GHz CM Wake 11/18/2018

Wake Power Deposition in the 3rd Harmonic Section Components # Surface Area, [mm2] Power Deposition, [W] Transition Diffusion A B BLA 2(3) 1.4e4 2.6 3.6 10 12 End Pipe (SS) 1 6.2e5 0.3 0.16 0.8 0.6 End Pipe (Rad) 2 804 1.8 1.2 - Bellows (Cu&SS) 18 3.7e4 0.14 0.12 Gate Valve 4 2.0e2 0.55 1.4 Spool Pipe (Cu) 1.0e5 0.01 HOMC 32 3.1e2 1.7 FPC 16 7.1e2 11.6 11.5 5.7 4.5 Total Wake Power 18.9 Transition model predicts much higher wakefields radiation to FPC & HOMC Over 65% of wake power is absorbed within the cryomodule itself! LCLS-II 3.9 GHz CM Wake 11/18/2018

Cryogenic Heat Loads in the 3rd Harmonic Section Both models show a significant amount of radiated wakefields, up to 65%, going to FPC and HOMC ports of the 3.9 GHz cryomodule. The major part of the total wakefield power (85%) is a source for the 50 K cryogenic heat load, while the rest is resulted in about 10% and 1% of the power deposition going to 5 K and 2 K circuits respectively. Without HOM absorber at the end of 3.9GHz cryomodule, power from wakes will be redistributed between SS tube and HOM absorber installed in upstream CM. Power going to the SS pipe (2.5m) will be <1 W maximum. LCLS-II 3.9 GHz CM Wake 11/18/2018

Back-up slides Andrei Lunin | LCLS-II BPM Final Design Review 12/12/2014

CM-End Modeling: Upstream End A2 gap 0.4mm A4=A2 A6 gap after valve 2mm A7 Transitional Area AI3mm AH 3mm A3 Cu pipe A1=A5 SS pipe CM Gate Valve

CM-End Modeling: Downstream End A8 3mm A9 transition Area A10=A6 A11 178 mm A10 A11 A12 A21 Absorber 50 x 45 mm + Bellows

Intercavity Bellows Modeling Bellow Physical Length = 128.2 mm. Bellow Effective Length (including convolutions): 317.33 mm. Bellow 3.5mm

Absorber Bellow Sketch