Lecture 19: Deadlock: Conditions, Detection and Avoidance

Slides:



Advertisements
Similar presentations
Deadlock Prevention, Avoidance, and Detection.  The Deadlock problem The Deadlock problem  Conditions for deadlocks Conditions for deadlocks  Graph-theoretic.
Advertisements

Deadlocks Today Resources & deadlocks Dealing with deadlocks Other issues Next Time Memory management.
MODERN OPERATING SYSTEMS Third Edition ANDREW S
Operating Systems COMP 4850/CISG 5550 Deadlock Avoidance Dr. James Money.
Chapter 3 Deadlocks TOPICS Resource Deadlocks The ostrich algorithm
MODERN OPERATING SYSTEMS Third Edition ANDREW S. TANENBAUM Chapter 6 Deadlocks Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All.
1 Deadlocks Chapter Resource 3.2. Introduction to deadlocks 3.3. The ostrich algorithm 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance.
Tanenbaum Ch 6 Silberschatz Ch 7
5/25/2015Page 1 Deadlock Management B. Ramamurthy.
DEADLOCK.
Chapter 3 Deadlocks - Αδιέξοδα 3.1. Resource
With slides from C. Griwodz, K. Li, A. Tanenbaum and M. van Steen
Avishai Wool lecture Introduction to Systems Programming Lecture 5 Deadlocks.
DPNM Lab. Dept. of CSE, POSTECH
Deadlock Chapter 3 R1 R2 P2P1 Allocated Requested.
Deadlocks Tore Larsen With slides from T. Plagemann, C. Griwodz, K. Li, A. Tanenbaum and M. van Steen.
Mehdi Naghavi Spring 1386 Operating Systems Mehdi Naghavi Spring 1386.
Chapter 3: Deadlocks Chapter 3 2 CMPS 111, UC Santa Cruz Overview  Resources  Why do deadlocks occur?  Dealing with deadlocks Ignoring them: ostrich.
Deadlock CSCI 444/544 Operating Systems Fall 2008.
The ‘deadlock’ conditions Reviewing some key points concerning the potential for ‘deadlock’ in an operating system.
Chapter 3 Deadlocks 3.1. Resource 3.2. Introduction to deadlocks
Deadlock Detection with One Resource of Each Type (1)
Chapter 6 Deadlocks Resources Introduction Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved
Chapter 3 Chapter 3: Deadlocks Chapter 3 2 CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Overview Resources Why do.
Deadlock Chapter 3 Thursday, February 22, Today’s Schedule Assignment #4 from Chapter 3 posted Deadlock - Chapter 3  Skip multiple resources (3.4.2.
1 Deadlocks Chapter Resource 3.2. Introduction to deadlocks 3.3. The ostrich algorithm 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance.
Chapter 3: Deadlocks. CMPS 111, Fall Overview ✦ Resources ✦ Why do deadlocks occur? ✦ Dealing with deadlocks Ignoring them: ostrich algorithm Detecting.
Chapter 7 – Deadlock (Pgs 283 – 306). Overview  When a set of processes is prevented from completing because each is preventing the other from accessing.
Overview Resources Why do deadlocks occur? Dealing with deadlocks Ignoring them: ostrich algorithm Detecting & recovering from deadlock Avoiding deadlock.
1 Deadlocks Chapter Resource 3.2. Introduction to deadlocks 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance 3.6. Deadlock prevention.
1 Deadlocks 2 Resources Examples of computer resources –printers –tape drives –tables Processes need access to resources in reasonable order Suppose.
1 Deadlocks Chapter Resource 3.2. Introduction to deadlocks 3.3. The ostrich algorithm 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance.
1 Deadlocks Chapter 3. 2 Resources Examples of computer resources –printers –tape drives –tables Processes need access to resources in reasonable order.
1 Pertemuan 10 Deadlock (lanjutan) Matakuliah: T0316/sistem Operasi Tahun: 2005 Versi/Revisi: 5.
Operating Systems 软件学院 高海昌 Operating Systems Gao Haichang, Software School, Xidian University 22 Contents  1. Introduction** 
1 Deadlock Definition of deadlock Condition for its occurrence Solutions for avoiding and breaking deadlock –Deadlock Prevention –Deadlock Avoidance –Deadlock.
1 Deadlocks Chapter Resource 3.2. Introduction to deadlocks 3.3. The ostrich algorithm 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance.
Operating Systems (OS)
1 MODERN OPERATING SYSTEMS Third Edition ANDREW S. TANENBAUM Chapter 6 Deadlocks Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc.
MODERN OPERATING SYSTEMS Third Edition ANDREW S. TANENBAUM Chapter 6 Deadlocks Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All.
Deadlocks. What is a Deadlock “A set of processes is deadlocked if each process in the set is waiting for an event that only another process in the set.
Deadlocks. Deadlock handling Deadlock prevention Deadlock avoidance Deadlock detection Deadlock recovery.
Copyright ©: Nahrstedt, Angrave, Abdelzaher1 Deadlock.
Informationsteknologi Monday, October 1, 2007Computer Systems/Operating Systems - Class 111 Today’s class Deadlock.
Deadlocks References –text: Tanenbaum ch.3. Deadly Embrace Deadlock definition –A set of process is dead locked if each process in the set is waiting.
Deadlocks CPE Operating Systems
DEADLOCKS Prepared By: Dr. Vipul Vekariya. D EADLOCK A set of processes is deadlocked when each process in the set is blocked awaiting an event that can.
Deadlock Operating Systems (CC2011NI) -Mr. Pranoy Man Pradhan.
Sistem Operasi IKH311 Deadlock. 2 Resources Examples of computer resources printers tape drives tables Processes need access to resources in reasonable.
MODERN OPERATING SYSTEMS Third Edition ANDREW S
ITEC 202 Operating Systems
Deadlocks References text: Tanenbaum ch.3.
Lecture 18: Deadlock: Conditions, Detection and Avoidance (cont.)
Deadlocks References text: Tanenbaum ch.3.
Deadlocks Definition A set of processes is in a Deadlock state when every process in the set is waiting for an event that can only be caused by another.
Chapter 3 Deadlocks 3.1. Resource 3.2. Introduction to deadlocks
DPNM Lab. Dept. of CSE, POSTECH
Review: Readers-Writers Problem
MODERN OPERATING SYSTEMS Third Edition ANDREW S
Deadlocks Peng Lu In a multiprogramming environment, several processes may compete for a finite number of resources. A process requests resources; if the.
Chapter 3 Deadlocks 3.1. Resource 3.2. Introduction to deadlocks
DEADLOCK.
Lecture 27 Syed Mansoor Sarwar
Lecture 19: Deadlock: Conditions, Detection and Avoidance
Chapter 3 Deadlocks 3.1. Resource 3.2. Introduction to deadlocks
Introduction to Deadlocks
Deadlocks.
Chapter 3 Deadlocks 3.1. Resource 3.2. Introduction to deadlocks
Deadlocks References text: Tanenbaum ch.3.
MODERN OPERATING SYSTEMS Third Edition ANDREW S
Presentation transcript:

Lecture 19: Deadlock: Conditions, Detection and Avoidance

Review: strategies for dealing with deadlocks just ignore the problem altogether detection and recovery dynamic avoidance prevention

Deadlock Avoidance Be very conservative when granting resources Don’t grant a resource if it could lead to a potential deadlock Not very practical, since this is too much overhead for granting resources

Deadlock Avoidance Figure 6-8. Two process resource trajectories.

Safe and Unsafe States (1) (a) (b) (c) (d) (e) Demonstration that the state in (a) is safe

Safe and Unsafe States (2) (a) (b) (c) (d) Demonstration that the state in b is not safe

The Banker's Algorithm for a Single Resource (a) (b) (c) Three resource allocation states safe unsafe

Banker's Algorithm for Multiple Resources Example of banker's algorithm with multiple resources

Review: Four Conditions for Deadlock Mutual exclusion condition each resource assigned to 1 process or is available Hold and wait condition process holding resources can request additional No preemption condition previously granted resources cannot forcibly taken away Circular wait condition must be a circular chain of 2 or more processes each is waiting for resource held by next member of the chain

Deadlock Prevention Attacking the mutual exclusion condition Attacking the hold and wait condition Attacking the no preemption condition Attacking the circular wait condition

Attacking the Hold and Wait Condition Require processes to request resources before starting a process never has to wait for what it needs Problems may not know required resources at start of run also ties up resources other processes could be using Variation: process must give up all resources then request all immediately needed

Attacking the No Preemption Condition This is not a viable option Consider a process given the printer halfway through its job now forcibly take away printer !!??

Attacking the Circular Wait Condition (a) (b) Normally ordered resources A resource graph

Summary of deadlock prevention Summary of approaches to deadlock prevention

Other Issues Two-phase locking Communication deadlocks Livelock Starvation