and the phases of matter

Slides:



Advertisements
Similar presentations
ICHEP conference, Paris, 22/07/10. Emergence Current Paradigm FUNDAMENTAL FORCES: carried by elementary particles.
Advertisements

Friedel Oscillations and Horizon Charge in 1D Holographic Liquids Nabil Iqbal Kavli Institute for Theoretical Physics In collaboration with Thomas.
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Quantum Phase Transitions Subir Sachdev Talks online at
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum antiferromagnetism and superconductivity Subir Sachdev Talk online at
AdS/CFT and condensed matter Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Hydrodynamic transport near quantum critical points and the AdS/CFT correspondence.
Quantum criticality, the cuprate superconductors, and the AdS/CFT correspondence HARVARD Talk online: sachdev.physics.harvard.edu.
Entanglement in Quantum Critical Phenomena, Holography and Gravity Dmitri V. Fursaev Joint Institute for Nuclear Research Dubna, RUSSIA Banff, July 31,
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); cond-mat/ cond-mat/ Leon Balents.
Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.
Remarkable power of Einstein’s equation Gary Horowitz UC Santa Barbara Gary Horowitz UC Santa Barbara.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Equilibrium dynamics of entangled states near quantum critical points Talk online at Physical Review Letters 78, 843.
Unexpected Connections in Physics: From Superconductors to Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Entanglement Tsunami Hong Liu.
Stringing together the quantum phases of matter Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
CERN Colloquium, 28/04/11. Matter and Forces Current Paradigm FUNDAMENTAL FORCES: carried by elementary particles.
The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.
The Quantum Space-Time Juan Maldacena Institute for Advanced Study 25 th Solvay Conference October 2011.
LS Cable, a South Korean company based in Anyang-si near Seoul, has ordered three million metres of superconducting wire from US firm American Superconductor.
The phase diagrams of the high temperature superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Entanglement Entropy in Holographic Superconductor Phase Transitions Rong-Gen Cai Institute of Theoretical Physics Chinese Academy of Sciences (April 17,
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Minoru Yamashita, Kyoto Univ. Quantum spin liquid in 2D Recipe.
The phase diagrams of the high temperature superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Phys. Rev. Lett M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Superfluid-insulator transition.
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum mechanics and the geometry of spacetime Juan Maldacena PPCM Conference May 2014.
Entanglement, geometry and the Ryu Takayanagi formula Juan Maldacena Kyoto, 2013.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Condensed matter physics and string theory HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum criticality: where are we and where are we going ?
Quantum Mechanical Models for Near Extremal Black Holes
Review on quantum criticality in metals and beyond
Toward a Holographic Model of d-wave Superconductors
Thermodynamic Volume in AdS/CFT
Quantum vortices and competing orders
T. Senthil Leon Balents Matthew Fisher Olexei Motrunich Kwon Park
Science 303, 1490 (2004); cond-mat/ cond-mat/
Quantum Information and Everything.
Solutions of black hole interior, information paradox and the shape of singularities Haolin Lu.
Topological Insulators
Electrical and thermal transport near quantum phase transitions in condensed matter, and in dyonic black holes Sean Hartnoll (KITP) Pavel.
Band Theory The other approach to band theory solves the Schrodinger equation using a periodic potential to represent the Coulomb attraction of the positive.
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); Physical Review B 70, (2004), 71,
Quantum phases and critical points of correlated metals
10 Publications from the project
Evidence for fully gapped superconductivity from microwave penetration depth measurements in PrFeAsO1-y single crystals K. Hashimoto1, T. Shibauchi1,
Quantum phase transitions and the Luttinger theorem.
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Deconfined quantum criticality
Quantum phase transitions out of the heavy Fermi liquid
Introduction to topological superconductivity and Majorana fermions
Presentation transcript:

and the phases of matter Quantum entanglement and the phases of matter Colloquium Ehrenfestii Leiden University May 9, 2012 HARVARD sachdev.physics.harvard.edu

Max Metlitski Liza Huijse Brian Swingle

Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron quantum states are adiabatically connected to independent electron states

Band insulators Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron quantum states are adiabatically connected to independent electron states Band insulators An even number of electrons per unit cell

Metals Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron quantum states are adiabatically connected to independent electron states Metals An odd number of electrons per unit cell

Superconductors Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron quantum states are adiabatically connected to independent electron states Superconductors

Modern phases of quantum matter Not adiabatically connected to independent electron states:

many-particle, long-range quantum entanglement Modern phases of quantum matter Not adiabatically connected to independent electron states: many-particle, long-range quantum entanglement

superposition and entanglement Quantum superposition and entanglement

Quantum Entanglement: quantum superposition with more than one particle

Quantum Entanglement: quantum superposition with more than one particle Hydrogen atom:

Quantum Entanglement: quantum superposition with more than one particle Hydrogen atom: Hydrogen molecule: _ = Superposition of two electron states leads to non-local correlations between spins

Quantum Entanglement: quantum superposition with more than one particle _

Quantum Entanglement: quantum superposition with more than one particle _

Quantum Entanglement: quantum superposition with more than one particle _

Quantum Entanglement: quantum superposition with more than one particle _ Einstein-Podolsky-Rosen “paradox”: Non-local correlations between observations arbitrarily far apart

Mott insulator: Triangular lattice antiferromagnet Nearest-neighbor model has non-collinear Neel order

Mott insulator: Triangular lattice antiferromagnet

Mott insulator: Triangular lattice antiferromagnet N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991)

Mott insulator: Triangular lattice antiferromagnet Spin liquid obtained in a generalized spin model with S=1/2 per unit cell = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).

Mott insulator: Triangular lattice antiferromagnet Spin liquid obtained in a generalized spin model with S=1/2 per unit cell = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).

Mott insulator: Triangular lattice antiferromagnet Spin liquid obtained in a generalized spin model with S=1/2 per unit cell = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).

Mott insulator: Triangular lattice antiferromagnet Spin liquid obtained in a generalized spin model with S=1/2 per unit cell = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).

Mott insulator: Triangular lattice antiferromagnet Spin liquid obtained in a generalized spin model with S=1/2 per unit cell = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).

Mott insulator: Triangular lattice antiferromagnet Spin liquid obtained in a generalized spin model with S=1/2 per unit cell = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).

Topological order in the Z2 spin liquid ground state B A

Topological order in the Z2 spin liquid ground state B A

B A Topological order in the Z2 spin liquid ground state M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006); A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006); Y. Zhang, T. Grover, and A. Vishwanath, Phys. Rev. B 84, 075128 (2011).

Promising candidate: the kagome antiferromagnet Numerical evidence for a gapped spin liquid: Simeng Yan, D. A. Huse, and S. R. White, Science 332, 1173 (2011). Young Lee, APS meeting, March 2012

superposition and entanglement Quantum superposition and entanglement

superposition and entanglement Quantum critical points of electrons in crystals String theory Black holes

superposition and entanglement Quantum critical points of electrons in crystals String theory Black holes

Examine ground state as a function of Spinning electrons localized on a square lattice S=1/2 spins J J/ Examine ground state as a function of

Spinning electrons localized on a square lattice J J/ At large ground state is a “quantum paramagnet” with spins locked in valence bond singlets

Spinning electrons localized on a square lattice J J/

Spinning electrons localized on a square lattice J J/

Spinning electrons localized on a square lattice J J/ No EPR pairs

Pressure in TlCuCl3 A. Oosawa, K. Kakurai, T. Osakabe, M. Nakamura, M. Takeda, and H. Tanaka, Journal of the Physical Society of Japan, 73, 1446 (2004).

TlCuCl3 An insulator whose spin susceptibility vanishes exponentially as the temperature T tends to zero.

Quantum paramagnet at ambient pressure TlCuCl3 Quantum paramagnet at ambient pressure

Neel order under pressure TlCuCl3 Neel order under pressure A. Oosawa, K. Kakurai, T. Osakabe, M. Nakamura, M. Takeda, and H. Tanaka, Journal of the Physical Society of Japan, 73, 1446 (2004).

Spin waves

Spin waves

Spin waves

Excitations of TlCuCl3 with varying pressure Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)

Excitations of TlCuCl3 with varying pressure Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)

Excitations of TlCuCl3 with varying pressure Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)

Excitations of TlCuCl3 with varying pressure S. Sachdev, arXiv:0901.4103 Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)

Quantum critical point with non-local entanglement in spin wavefunction

Tensor network representation of entanglement at quantum critical point M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007) G. Vidal, Phys. Rev. Lett. 99, 220405 (2007) F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Phys. Rev. Lett. 96, 220601 (2006)

Entanglement entropy d A

Most links describe entanglement within A Entanglement entropy d A Most links describe entanglement within A

Links overestimate entanglement between A and B Entanglement entropy d A Links overestimate entanglement between A and B

Entanglement entropy = d A Entanglement entropy = Number of links on optimal surface intersecting minimal number of links.

Long-range entanglement in a CFT3 B A M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Physical Review B 80, 115122 (2009). H. Casini, M. Huerta, and R. Myers, JHEP 1105:036, (2011) I. Klebanov, S. Pufu, and B. Safdi, arXiv:1105.4598

quantum critical point Characteristics of quantum critical point

quantum critical point Characteristics of quantum critical point

quantum critical point Characteristics of quantum critical point

quantum critical point Characteristics of quantum critical point

superposition and entanglement Quantum critical points of electrons in crystals String theory Black holes

superposition and entanglement Quantum critical points of electrons in crystals String theory Black holes

superposition and entanglement Quantum critical points of electrons in crystals String theory Black holes

String theory

d Tensor network representation of entanglement at quantum critical point d

String theory near a D-brane d Emergent direction of AdS4

d Tensor network representation of entanglement at quantum critical point d Emergent direction of AdS4 Brian Swingle, arXiv:0905.1317

Entanglement entropy = d A Entanglement entropy = Number of links on optimal surface intersecting minimal number of links. Emergent direction of AdS4

r Quantum matter with long-range entanglement Emergent holographic direction J. McGreevy, arXiv0909.0518

r A Quantum matter with long-range entanglement Emergent holographic direction

r A Area measures entanglement entropy Quantum matter with long-range entanglement A Area measures entanglement entropy r Emergent holographic direction S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).

superposition and entanglement Quantum critical points of electrons in crystals String theory Black holes

superposition and entanglement Quantum critical points of electrons CFT3 Quantum critical points of electrons in crystals String theory Black holes

superposition and entanglement Quantum critical points of electrons in crystals String theory Black holes

Quantum critical point with non-local entanglement in spin wavefunction

Thermally excited spin waves Thermally excited triplon particles

Thermally excited Thermally excited spin waves triplon particles Short-range entanglement Short-range entanglement

Excitations of a ground state with long-range entanglement Thermally excited spin waves Thermally excited triplon particles

Needed: Accurate theory of quantum critical spin dynamics Excitations of a ground state with long-range entanglement Needed: Accurate theory of quantum critical spin dynamics Thermally excited spin waves Thermally excited triplon particles

A 2+1 dimensional system at its quantum critical point String theory at non-zero temperatures A 2+1 dimensional system at its quantum critical point

String theory at non-zero temperatures A 2+1 dimensional system at its quantum critical point A “horizon”, similar to the surface of a black hole !

Objects so massive that light is gravitationally bound to them. Black Holes Objects so massive that light is gravitationally bound to them.

Objects so massive that light is gravitationally bound to them. Black Holes Objects so massive that light is gravitationally bound to them. In Einstein’s theory, the region inside the black hole horizon is disconnected from the rest of the universe.

Black Holes + Quantum theory Around 1974, Bekenstein and Hawking showed that the application of the quantum theory across a black hole horizon led to many astonishing conclusions

Quantum Entanglement across a black hole horizon _

Quantum Entanglement across a black hole horizon _

Quantum Entanglement across a black hole horizon _ Black hole horizon

Quantum Entanglement across a black hole horizon _ Black hole horizon

Quantum Entanglement across a black hole horizon There is a non-local quantum entanglement between the inside and outside of a black hole Black hole horizon

Quantum Entanglement across a black hole horizon There is a non-local quantum entanglement between the inside and outside of a black hole Black hole horizon

This entanglement leads to a black hole temperature Quantum Entanglement across a black hole horizon There is a non-local quantum entanglement between the inside and outside of a black hole This entanglement leads to a black hole temperature (the Hawking temperature) and a black hole entropy (the Bekenstein entropy)

A 2+1 dimensional system at its quantum critical point String theory at non-zero temperatures A 2+1 dimensional system at its quantum critical point A “horizon”, whose temperature and entropy equal those of the quantum critical point

Friction of quantum criticality = waves falling into black brane String theory at non-zero temperatures A 2+1 dimensional system at its quantum critical point A “horizon”, whose temperature and entropy equal those of the quantum critical point Friction of quantum criticality = waves falling into black brane

A 2+1 dimensional system at its quantum critical point String theory at non-zero temperatures A 2+1 dimensional system at its quantum critical point An (extended) Einstein-Maxwell provides successful description of dynamics of quantum critical points at non-zero temperatures (where no other methods apply) A “horizon”, whose temperature and entropy equal those of the quantum critical point

superposition and entanglement Quantum critical points of electrons in crystals String theory Black holes

superposition and entanglement Quantum critical points of electrons in crystals String theory Black holes

Metals, “strange metals”, and high temperature superconductors Insights from gravitational “duals”

High temperature superconductors

a new class of high temperature superconductors Iron pnictides: a new class of high temperature superconductors Ishida, Nakai, and Hosono arXiv:0906.2045v1

H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, AF S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, 184519 (2010)

AF Short-range entanglement in state with Neel (AF) order S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, 184519 (2010)

AF Superconductor Bose condensate of pairs of electrons Short-range entanglement S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, 184519 (2010)

H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, AF Ordinary metal (Fermi liquid) S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, 184519 (2010)

Sommerfeld-Bloch theory of ordinary metals Momenta with electron states occupied Momenta with electron states empty

Key feature of the theory: Sommerfeld-Bloch theory of ordinary metals Key feature of the theory: the Fermi surface 115

H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, AF Ordinary metal (Fermi liquid) S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, 184519 (2010)

H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Strange Metal AF S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, 184519 (2010)

Ordinary Metal

Strange Metal Ordinary Metal

H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Strange Metal AF S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, 184519 (2010)

Excitations of a ground state with long-range entanglement Strange Metal AF S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, 184519 (2010)

Key (difficult) problem: Describe quantum critical points and phases of systems with Fermi surfaces leading to metals with novel types of long-range entanglement +

Challenge to string theory: Describe quantum critical points and phases of metals

Challenge to string theory: Describe quantum critical points and phases of metals Can we obtain gravitational theories of superconductors and ordinary Sommerfeld-Bloch metals ?

Challenge to string theory: Describe quantum critical points and phases of metals Can we obtain gravitational theories of superconductors and ordinary Sommerfeld-Bloch metals ? Yes T. Nishioka, S. Ryu, and T. Takayanagi, JHEP 1003, 131 (2010) G. T. Horowitz and B. Way, JHEP 1011, 011 (2010) S. Sachdev, Physical Review D 84, 066009 (2011)

Challenge to string theory: Describe quantum critical points and phases of metals Do the “holographic” gravitational theories also yield metals distinct from ordinary Sommerfeld-Bloch metals ?

Challenge to string theory: Describe quantum critical points and phases of metals Do the “holographic” gravitational theories also yield metals distinct from ordinary Sommerfeld-Bloch metals ? Yes, lots of them, with many “strange” properties ! S.-S. Lee, Phys. Rev. D 79, 086006 (2009); M. Cubrovic, J. Zaanen, and K. Schalm, Science 325, 439 (2009); T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694; F. Denef, S. A. Hartnoll, and S. Sachdev, Phys. Rev. D 80, 126016 (2009)

Challenge to string theory: Describe quantum critical points and phases of metals How do we discard artifacts, and choose the holographic theories applicable to condensed matter physics ?

Challenge to string theory: Describe quantum critical points and phases of metals How do we discard artifacts, and choose the holographic theories applicable to condensed matter physics ? Choose the theories with the proper entropy density Checks: these theories also have the proper entanglement entropy and Fermi surface size ! N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv:1111.1023 L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

Entanglement entropy of Fermi surfaces B A Y. Zhang, T. Grover, and A. Vishwanath, Physical Review Letters 107, 067202 (2011)

r Quantum matter with long-range entanglement Emergent holographic direction J. McGreevy, arXiv0909.0518

Quantum matter with long-range entanglement r Emergent holographic direction Abandon conformal invariance, and only require scale invariance at long lengths and times.....

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv:1111.1023

Conclusions Phases of matter with long-range quantum entanglement are prominent in numerous modern materials.

Simplest examples of long-range entanglement are in Conclusions Simplest examples of long-range entanglement are in insulating antiferromagnets: Z2 spin liquids and quantum critical points

Conclusions More complex examples in metallic states are experimentally ubiquitous, but pose difficult strong-coupling problems to conventional methods of field theory

String theory and gravity in emergent dimensions Conclusions String theory and gravity in emergent dimensions offer a remarkable new approach to describing states with long-range quantum entanglement.

String theory and gravity in emergent dimensions Conclusions String theory and gravity in emergent dimensions offer a remarkable new approach to describing states with long-range quantum entanglement. Much recent progress offers hope of a holographic description of “strange metals”

Emergent holographic direction anti-de Sitter space Emergent holographic direction r

anti-de Sitter space