Analysis of Hydrographs

Slides:



Advertisements
Similar presentations
RIVER DRAINAGE BASINS.
Advertisements

Analysis of Hydrographs
The Flood hydrograph A brief explanation-
Factors that affect flood risk…
Account for the pattern shown on the storm hydrograph. 8 marks Connection between rainfall and mean daily flow. Connection between rainfall and mean daily.
Flooding Case Study - Boscastle
Higher Geography Hydrosphere Homework- Answers Question 1 (a)The following points should be mentioned in your answers; –Water flows through the system.
WJEC (B) GCSE Geography Theme 2 Topic 2 Click to continue Hodder Education Revision Lessons Understanding hydrographs.
River 3- Storm Hydrographs
CHARACTERISTICS OF RUNOFF
Hydrograph Interpretation.
River Hydrographs Why do we use hydrographs?
Construction And Analysis Of Hydrographs. Hydrograph Record of River Discharge over a period of time River Discharge = cross sectional area rivers mean.
Analysis of Hydrographs
Chapter 6 Section 1 – Running Water
Construction Analysis Hydrographs
The Hydrologic (Water) Cycle. Surface Water Oceans Rivers and streams Lakes and ponds Springs – groundwater becomes surface water.
Storm Hydrographs Yr12IB Drainage Basins.
Hydrology & Water Resources Engineering
FLOOD HYDROGRAPHS FOR GCSE GEOGRAPHY.
DRAINAGE BASINS AND FLOOD HYDROGRAPHS
Flood hydrographsHydrosphere. Flood hydrographs show the effect that precipitation has on the water levels in a river. After a storm the water levels.
Construction And Analysis Of Hydrographs Hours from start of rain storm Discharge (m 3 /s) Base flow Through flow Overland.
Construction And Analysis of Hydrographs ©Microsoft Word clipart.
River regimes Learning objectives: Recap on flood hydrographs
Storm Hydrographs A hydrograph shows the discharge of a river at a given point over a period of time. The hydrograph is used to show how a particular river.
THE CAUSES OF FLOODING Moo!. Causes of flooding memory game- 1 minute to remember Heavy rain rainfall Snow melt Antecedent rainfall (it has rained before.
CE 424 HYDROLOGY Chapter 6 Hydrograph Analysis Dr. Saleh AlHassoun 1.
Higher Geography Hydrosphere
Hydrosphere Revision. Hydrosphere Questions Most commonly asked questions, every 2 years on average, are those related to OS maps and those which ask.
RIVER DRAINAGE BASINS. A RIVER SYSTEM ACTS LIKE A SYSTEM OF DOWNPIPES AND GUTTERING ON A HOUSE - IT ALLOWS THE MOVEMENT OF RAINWATER INTO THE SEA.
Construction And Analysis of Hydrographs ©Microsoft Word clipart Ballakermeen High School.
River Processes and Pressures What are Hydrographs?
Hydrograph Analysis. Components of river flow Contributions into a river/stream Overland flow – Flow over land surface due to precipitation (runoff)
The Storm Hydrograph Specification Focus:
Geomorphology The Changing Landscape. Water Supply Water is one of the most powerful earth-carving forces there is Water is one of the most powerful earth-carving.
A RIVER SYSTEM ACTS LIKE A SYSTEM OF DOWNPIPES AND GUTTERING ON A HOUSE - IT ALLOWS THE MOVEMENT OF RAINWATER INTO THE SEA.
a) Water stored in the rocks below ground
Nicolson Institute - Geography Department The objectives of this PowerPoint presentation and the accompanying work sheet are to - introduce storm hydrographs.
Lesson 2 – page 1.  To learn what is a flood hydrograph  To learn how to read a flood hydrograph  To learn what is:  Lag time  Peak discharge  Rising.
SDME preparation Jan 2012 A Damming report- why are some strategies for flood management more sustainable than others? Rivers Revision.
HYDROGRAPHS: CONSTRUCTION AND ANALYSIS 01/10/2016.
HYDROLOGY Lecture 10 Unit Hydrograph
Flood Hydrographs How do we know if a river will flood?
Analysis of Hydrographs
HYDROSPHERE 2.
Construction Analysis Hydrographs
Storm Hydrographs Storm hydrographs are used to measure a river’s flow and show the change in river discharge over a short period of time after a storm.
Lesson two: Factors affecting the hydrological cycle.
Lesson four: Hydrographs
The Drainage Basin System
HIGHER GEOGRAPHY Hydrosphere - Hydrographs.
Lesson five: Urban and Rural Hydrographs
Storm Hydrograph Tutorial
The issue: A Damming report – why are some strategies for flood management more sustainable than others?
What causes rivers to flood?
Why do Rivers Flood and How Can They be Managed?
Hyetographs & Hydrographs
Weekly lesson objectives
Lesson two: Factors affecting the hydrological cycle.
Analysis of Hydrographs
Hydrographs River Discharge = cross sectional area X
Lesson six: Explaining (and describing) hydrographs
Analysis of Hydrographs
Carlisle Flood: 2005 Why has this area flooded? List all the reasons you can think of.
Today we are learning this content:
Storm Hydrographs By: Sofia Gastelu.
Presentation transcript:

Analysis of Hydrographs Construction And Analysis of Hydrographs ©Microsoft Word clipart ©Microsoft Word clipart

Hydrograph Record of River Discharge (the level of water flowing down a river channel) over a period of time, they show how certain rivers respond to a rainstorm. River Discharge (the level of water flowing down a river) (is calculated) = cross sectional area rivers mean (average) velocity X (at a particular point in its course) Storm Hydrographs Show the change in discharge caused by a period of rainfall

Construct & Analyse Hydrographs ? Why Construct & Analyse Hydrographs ? To find out discharge patterns of a particular drainage basin Help predict flooding events, therefore influence implementation of flood prevention measures ©Microsoft Word clipart

Storm (flood) Hydrographs Construction ©Microsoft Word clipart Of Storm (flood) Hydrographs

Flood Hydrograph 3 2 Discharge (m3/s) 1 0 12 24 36 48 30 72 Basin lag time Peak flow Flood Hydrograph 3 Rising limb Overland flow Recession limb 2 mm Discharge (m3/s) 4 Through flow 1 3 2 Base flow 0 12 24 36 48 30 72 Hours from start of rain storm

Hours from start of rain storm The discharge of the river is measured in cumecs - this stands for cubic metres per second 3 2 1 Discharge (m3/s) 0 12 24 36 48 30 72 Hours from start of rain storm

Rainfall shown in mm, as a bar graph 3 2 mm Discharge (m3/s) 4 1 3 2 0 12 24 36 48 30 72 Hours from start of rain storm

Discharge in m3/s, as a line graph 2 mm Discharge (m3/s) 4 1 3 2 0 12 24 36 48 30 72 Hours from start of rain storm

Rising limb The normal (base) flow of the river starts to rise when run-off, ground and soil water reaches the river. 3 Rising limb 2 mm Discharge (m3/s) 4 1 3 2 0 12 24 36 48 30 72 Hours from start of rain storm

Peak flow Peak flow Maximum discharge in the river, the time when the river reaches its highest flow 3 Rising limb 2 mm Discharge (m3/s) 4 1 3 2 0 12 24 36 48 30 72 Hours from start of rain storm

shows that water is still reaching the river but in decreasing amounts Recession limb Peak flow shows that water is still reaching the river but in decreasing amounts 3 Rising limb Recession limb 2 mm Discharge (m3/s) 4 1 3 2 0 12 24 36 48 30 72 Hours from start of rain storm

The time it takes for the water to find its way to the river Basin lag time Basin lag time Peak flow The time it takes for the water to find its way to the river 3 Rising limb Recession limb 2 mm Discharge (m3/s) 4 1 3 2 0 12 24 36 48 30 72 Hours from start of rain storm

Normal discharge of the river Base flow Basin lag time Peak flow Normal discharge of the river 3 Rising limb Recession limb 2 mm Discharge (m3/s) 4 1 3 2 Base flow 0 12 24 36 48 30 72 Hours from start of rain storm

+ = Overland flow Through flow Storm Flow 3 2 Discharge (m3/s) 1 Basin lag time + Peak flow 3 Through flow = Rising limb Overland flow Recession limb 2 Storm Flow mm Discharge (m3/s) 4 Through flow 1 3 2 Base flow 0 12 24 36 48 30 72 Hours from start of rain storm

Volume of water reaching the river from surface run off Overland flow Through flow Volume of water reaching the river from surface run off Volume of water reaching the river through the soil and underlying rock layers

Analysis ©Microsoft Word clipart

Interpretation of Storm Hydrographs Basin lag time You need to refer to: Peak flow 3 Rising Limb Rising limb Base flow Through flow Overland flow 2 Recession limb mm Recession Limb Discharge (m3/s) 4 1 3 Lag time 2 Rainfall Intensity 0 12 24 36 48 30 72 Hours from start of rain storm Peak flow compared to Base flow Recovery rate, back to Base flow

Some Factors influencing Storm Hydrographs Area Slope Rock Type Land Use Soil Precipitation / Temp ©Microsoft Word clipart

Area Large basins receive more precipitation than small therefore have larger runoff Larger size means longer lag time as water has a longer distance to travel to reach the trunk river Area Rock Type Soil Slope Land Use Precipitation / Temp

Slope Channel flow can be faster down a steep slope therefore steeper rising limb and shorter lag time Area Rock Type Soil Slope Land Use Precipitation / Temp

Rock Type Permeable rocks mean rapid infiltration and little overland flow therefore shallow rising limb Area Rock Type Soil Slope Land Use Precipitation / Temp

Soil Infiltration is generally greater on thick soil The more infiltration occurs the longer the lag time and shallower the rising limb Area Rock Type Soil Slope Land Use Precipitation / Temp

Land Use Urbanisation - concrete and tarmac form impermeable surfaces, creating a steep rising limb and shortening the time lag In wooded areas, trees intercept/absorb the precipitation, creating a shallow rising limb and lengthening the time lag Area Rock Type Soil Slope Land Use Precipitation / Temp

Precipitation & Temperature Short intense rainstorms can produce rapid overland flow and steep rising limb If there have been extreme temperatures, the ground can be hard (either baked or frozen) causing rapid surface run off Snow on the ground can act as a store producing a long lag time and shallow rising limb. Once a thaw sets in the rising limb will become steep Area Rock Type Precipitation / Temp Soil Slope Land Use

These influencing factors will: Change throughout the rivers course Remember! These influencing factors will: Influence each other Change throughout the rivers course