Hadrons and Nuclei : Chiral Symmetry and Baryons

Slides:



Advertisements
Similar presentations
Lecture 1: basics of lattice QCD Peter Petreczky Lattice regularization and gauge symmetry : Wilson gauge action, fermion doubling Different fermion formulations.
Advertisements

 Symmetries and vanishing couplings in string-derived low-energy effective field theory              Tatsuo Kobayashi 1.Introduction.
Introduction & motivation Baryons in the 1/N c expansion of QCD Photoproduction of excited baryons Summary & conclusions N.N. Scoccola Department of Physics.
QCD-2004 Lesson 1 : Field Theory and Perturbative QCD I 1)Preliminaries: Basic quantities in field theory 2)Preliminaries: COLOUR 3) The QCD Lagrangian.
1 A Model Study on Meson Spectrum and Chiral Symmetry Transition Da
Exotic and excited-state meson spectroscopy and radiative transitions from lattice QCD Christopher Thomas, Jefferson Lab In collaboration with: Jo Dudek,
QCD – from the vacuum to high temperature an analytical approach.
16/3/2015 Baryon-Baryon Interactions From Lattice QCD Martin Savage University of Washington K  (Hyperons 2006, Mainz, Germany)
Hadrons and Nuclei : Introductory Remarks Lattice Summer School Martin Savage Summer 2007 University of Washington.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Symmetries By Dong Xue Physics & Astronomy University of South Carolina.
Chiral Dynamics How s and Why s 3 rd lecture: the effective Lagrangian Martin Mojžiš, Comenius University23 rd Students’ Workshop, Bosen, 3-8.IX.2006.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Lattice 07, Regensburg, 1 Magnetic Moment of Vector Mesons in Background Field Method Structure of vector mesons Background field method Some results x.
The Constituent Quark Models. Outline The Quark Model Original Quark Model Additions to the Original Quark Model Color Harmonic Potential Model Isgur-Karl.
Chiral Dynamics How s and Why s 1 st lecture: basic ideas Martin Mojžiš, Comenius University23 rd Students’ Workshop, Bosen, 3-8.IX.2006.
QUARKS, GLUONS AND NUCLEAR FORCES Paulo Bedaque University of Maryland, College Park.
P Spring 2002 L9Richard Kass Four Quarks Once the charm quark was discovered SU(3) was extended to SU(4) !
The N to Delta transition form factors from Lattice QCD Antonios Tsapalis University of Athens, IASA EINN05, Milos,
Isospin effect in asymmetric nuclear matter (with QHD II model) Kie sang JEONG.
HL-ch.3 Sept. 2002Student Seminar Subatomic Physics1 Seminar Subatomic Physics Chapter 3: New developments in hadronic particle production Nucleon resonances.
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
P Spring 2003 L5 Isospin Richard Kass
II Russian-Spanish Congress “Particle and Nuclear Physics at all scales and Cosmology”, Saint Petersburg, Oct. 4, 2013 RECENT ADVANCES IN THE BOTTOM-UP.
Lecture 12: The neutron 14/10/ Particle Data Group entry: slightly heavier than the proton by 1.29 MeV (otherwise very similar) electrically.
Pion mass difference from vacuum polarization E. Shintani, H. Fukaya, S. Hashimoto, J. Noaki, T. Onogi, N. Yamada (for JLQCD Collaboration) December 5,
Limitations of Partial Quenching Stephen Sharpe and Ruth Van de Water, University of Washington, Seattle QCD with 3 flavors (u, d, s) possesses an approximate.
Nuclear Symmetry Energy from QCD Sum Rule The 5 th APFB Problem in Physics, August 25, 2011 Kie Sang JEONG Su Houng LEE (Theoretical Nuclear and Hadron.
4-quark operator contributions to neutron electric dipole moment Haipeng An, University of Maryland; PHENO 2009 In collaboration with Xiangdong Ji, Fanrong.
Nucleon Polarizabilities: Theory and Experiments
Huey-Wen Lin — Workshop1 Semileptonic Hyperon Decays in Full QCD Huey-Wen Lin in collaboration with Kostas Orginos.
Chiral symmetry breaking and low energy effective nuclear Lagrangian Eduardo A. Coello Perez.
Amand Faessler, Tuebingen1 Chiral Quark Dynamics of Baryons Gutsche, Holstein, Lyubovitskij, + PhD students (Nicmorus, Kuckei, Cheedket, Pumsa-ard, Khosonthongkee,
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
Integrating out Holographic QCD Models to Hidden Local Symmetry Masayasu Harada (Nagoya University) Dense strange nuclei and compressed baryonic matter.
Toru T. Takahashi with Teiji Kunihiro ・ Why N*(1535)? ・ Lattice QCD calculation ・ Result TexPoint fonts used in EMF. Read the TexPoint manual before you.
Spectral sum rules and duality violations Maarten Golterman (SFSU) work with Oscar Catà and Santi Peris (BNL workshop Domain-wall fermions at 10 years)
An Introduction to Lattice QCD and Monte Carlo Simulations Sinya Aoki Institute of Physics, University of Tsukuba 2005 Taipei Summer Institute on Particles.
Hadrons from a hard wall AdS/QCD model Ulugbek Yakhshiev (Inha University & National University of Uzbekistan) Collaboration Hyun-Chul Kim (Inha University)
The Fubini-Furlan-Rossetti sum rule. LET.
Convergence of chiral effective theory for nucleon magnetic moments P. Wang, D. B. Leinweber, A. W. Thomas, A. G. Williams and R. Young.
2006 5/19QCD radiative corrections1 QCD radiative corrections to the leptonic decay of J/ψ Yu, Chaehyun (Korea University)
QQ systems are ideal for strong interactions studies Scales and Effective Field Theories:systematic approach pNRQCD: the QQbar and QQQ potentials Applications.
Denis Parganlija (Vienna UT) Mesons in non-perturbative and perturbative regions of QCD Mesons in non-perturbative and perturbative regions of QCD Denis.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
C.A. Dominguez Centre for Theoretical Physics & Astrophysics University of Cape Town Department of Physics, Stellenbosch University South Africa XII WORKSHOP.
C.A. Dominguez Centre for Theoretical Physics & Astrophysics University of Cape Town * This talk draws on work done in collaboration with J.I. Jottar,
into a quark-antiquark pair self-coupling of gluons
Baryon Isospin Mass Splittings
A novel probe of Chiral restoration in nuclear medium
Nuclear Forces - Lecture 3 -
Weak Interacting Holographic QCD
Precision Probes for Physics Beyond the Standard Model
Aspects of the QCD phase diagram
The Structure of Nuclear force in a chiral quark-diquark model
Structure of Hadrons Hadrons baryons mesons quarks estimates based
Workshop on Duality, Frascati
p, KK , BB from Lattice QCD Martin Savage Univ. of Washington
Adnan Bashir, UMSNH, Mexico
The Color Charge & Bag Model
how is the mass of the nucleon generated?
Neutron EDM with external electric field
有限密度・ 温度におけるハドロンの性質の変化
Chiral Structure of Hadronic Currents
Nuclear Forces - Lecture 5 -
Hyun Kyu Lee Hanyang University
helicity distribution and measurement of N spin
Pion Physics at Finite Volume
Institute of Modern Physics Chinese Academy of Sciences
Theory on Hadrons in nuclear medium
Presentation transcript:

Hadrons and Nuclei : Chiral Symmetry and Baryons 11/18/2018 Hadrons and Nuclei : Chiral Symmetry and Baryons Lattice Summer School Make sure that the toolbars are open Standard Formatting Drawing Martin Savage Summer 2007 University of Washington

Why are Baryons Different ? Baryon masses , MB ~ Lc Tree-level is fine, quantum loops are the issue M B 4 ¼ f » 1 £ p N C ¤ Looking to compute pion and other IR physics, so re-arrange things to include mp/MN and q/MN as perturbations Jenkins and Manohar 1991

Static Source + Perturbative Corrections -- Covariant M = 1 M = 1

Get IR correct and UV will follow(1) Consider complex scalar field : L = j @ ¹ Á 2 ¡ m P ¹ = m Á v + k 2 ( ) ¢ v ¹ i s a f o u r - e l c t y , 2 = 1 v ¹ = ( 1 ; ) i n r e s t f a m

Get IR correct and UV will follow(2) k < m Á v , s e c n d t i a p u b : i p 2 ¡ m = ( v + k ) ¢ ! 1 O µ ¶ G o d a p r x u n t i l k ! m . h e U V

Get IR correct and UV will follow(3) Field redefintion : consider scalar field Á ( x ) ! e ¡ i m v ¹ j @ 2 = + ¤ L Removed Classical Trajectory h v = p 2 m Á L ¤ i ¢ @ + 1 j ¹

Heavy Fermions : Generic : HQET , HBcPT , … Procedure has one more step to it : h v = e i M ¹ x P + N H ¡ [ ] P § = 1 2 ( + v ¹ ° ) L = h v i ¢ D ¡ H [ 2 M + ] ° ¹ ? 1 · ( ) ¾ º ; ¸ O µ ¶ Systematic covariant expansion in 1/M

Why can we do this ? 1 2 M < ¸

Quantum Loops l o p / R » No MN’s !!! i k ¡ m d k ( 2 ¼ ) i v ¢ ¡ m 3 Á l o p / R d n k ( 2 ¼ ) i v ¢ ¡ m Á » 3 No MN’s !!!

Lectures by Claude Bernard HBcPT (1) § = e i 2 M f µ ¼ p + ¡ ¶ f ¼ » + O ¡ m 2 = ¤ Â ¢ 1 3 M e V L = f 2 8 T r £ @ ¹ § y ¤ ¡ ¸ m q + : ! R Lectures by Claude Bernard

Baryons : Only transformations under vector subgroup are known !! HBcPT (2) Baryons : Only transformations under vector subgroup are known !! § = » 2 ! L R y U ( ¼ ; x ) u g l N ! U ; B y @ ¹ N ! U y +

HBcPT (3) V = 1 2 ¡ » @ + ¢ f ¼ : A i L = N i ¢ D + 2 g S : @ V f S ; ¹ = 1 2 ¡ » @ y + ¢ f ¼ : A i L = N v i ¢ D + 2 g ( ) A S n : ¹ @ V Chiral limit of $g_A$ f S ¹ v ; º g = 1 2 ( ¡ ) [ ] i ² ¾ ½

Integral Tricks : Dim Reg = Z d n q ( 2 ¼ ) 1 v ¢ + i ² ¡ m a b ¸ 8 ³ ´ 4 O

Integrals : cut-off p m { n o a l y t i c I = Z d q ( 2 ¼ ) 1 v ¢ + i 4 q ( 2 ¼ ) 1 v ¢ + i ² ¡ m » ¤ 3 j µ ¶ : p m q { n o a l y t i c

Including the D MD-MN << Lc must include D in cPT L = ¡ T i ¢ D Jenkins and Manohar… MD-MN ~ mp ~ p L = ¡ T ® v i ¢ D + 2 g ( ) S A n N h : c

HBcPT M + k v ! Identified small expansion parameters Mp/Lc , p/Lc Power-counting explicit in Lagrangian Power-counting preserved at loop-level Some operator coefficients constrained by Lorentz-invariance Reparameterization Invariance M v ¹ + k !

Nucleon Mass revisited : Chiral Symmetry q L ( m q ) = ¡ ® N T r [ + ] ¯ p u d n M 2 ¼ µ 1 ¶ 4 3 g A 6 f : One-loop diagram m q + = 1 2 ¡ » y ¢

Nucleon Mass including the D p = + m 2 ¼ µ ® 1 ¯ ¶ u ¡ d 4 3 g A 6 f N ¢ F ( ) " l o à i ² ! # ¹ g N ¢

sN-Term and Chiral Expansion Chiral expansion is worse than that of the nucleon mass itself ¾ N = ¡ ® + 1 2 ¯ ¢ m ¼ 3 g A 6 f

Nucleon Mass (Silas Beane)

Loop Contribution to Magnetic Moment of the Nucleon (1) S ¢ ( q ¡ k ) S ¢ q Clebsch’s I » C ¼ Q 4 g 2 A e f Z d n q ( ) S ¢ ¡ k ² v + i m ¹ p = ( ) ¡ g 2 A M N m ¼ 4 f + :

Baryon Magnetic Moments F o r s m a l e n u g h ¼ ¹ p = ( ) ¡ g 2 A M N m ¼ 4 f + :

Magnetic Moments : Coleman-Glashow Relations = e 4 M N ¹ i B ¾ º F ¹ § + = p : 2 4 5 N M 7 9 8 ¤ n ¡ 1 6 3 ¥ Works as well as can be expected for SU(3) symmetry

Baryon Magnetic Moments (3) Surviving Relations W o r k i n g t N L O , c l u d e m s p q a b w h y : 6 ¹ n + § ¡ 4 p 3 ¤ = ¥ 1 5 : 9 N M 7 8

S-wave electric dipole g + p p0 + p (1) ¼ c a r i e s l ¼ N h a s j = l § 1 2 M N 4 ¼ p s T ¢ ² = i ¾ ³ E + ^ k q P 1 ´ 2 £ 3 P - w a v e m p l i t u d s E 1 + ; M ¡ S-wave electric dipole h p ¼ j e m ¹ A i ! N ¾ ¢ E + : Electric field

g + p p0 + p (2) ¼ + ¼ m ¼ § > E M Square root cusp

g + p p0 + p (3) E = a m b : Vanishes in the chiral limit + = a m ¼ b 2 : Vanishes in the chiral limit P t h r e s 1 = j q g ¼ N 8 M 2 · + p m c : ¸ Slope at threshold is calculable

Where is HBcPT valid Mp ~ 0 !! Will fail as Mp -> Lc Expansion in mp/Lc and not (mp/Lc)2 Convergence will be worse than mesons Measured not by order-by-order values of bare parameters, but by quality of fits order-by-order

Finite Volume (1) k = 2 ¼ L n ( ; ) Lattice calculations are performed in a finite volume with (usually) periodic boundary conditions in the spatial directions. Momentum states are discrete k = 2 ¼ L n ( x ; y z )

Finite Volume (2) Assuming the Lc >> L-1 I = Z d q ( 2 ¼ ) 1 v ¢ The counterterms are unchanged, but the IR physics … p-loops….are modified Meson perturbation theory well explored Baryons properties at finite volume are more recent Assume that time-direction of lattice is infinite I = Z d 4 q ( 2 ¼ ) 1 v ¢ + i ² ¡ m ! L 3 X

Modified bessel function Finite Volume (3) 1 L 3 X q ( 2 + m ) ® = Z d ¼ ¡ p 6 j K Modified bessel function of the 2nd kind where we have used X n ± 3 ( y ¡ ) = p e i 2 ¼ ¢ Poisson Formula and X n f ( ) = Z d 3 y ± ¡

Periodic Boundary Conditions and Images = s u m o v e r i a g c h

Finite Volume (4) : the p-regime K º ( x ) ! r ¼ 2 e ¡ + O 1 = For m L >> 1 such sums converge rapidly Power-counting is the same as infinite-volume Ali Khan et al Beane .. includes the D O ( p 4 ) O ( p 3 ) m ¼ = 5 4 M e V

Finite Volume (5) : Nucleon Magnetic Moment

Finite Volume (6) : gA

Form of FV Corrections to gA 1 GNN (L) = gA (1 - ) + … mp f2 L3 mp T >> 1 mp L ~ 1 and << 1 mp L >> 1 (Will Detmold and MJS) (Silas Beane and MJS)

Partially Quenched cPT (1) Discussed by Claude in the meson sector….will not cover basic approach. Baryons are a bit trickier to include Irreps of SU(4|2) or SU(6|3) determined in analogous way to heavy-baryon irreps First discussed by Labrenz+Sharpe S U ( 2 ) L ­ R ! 4 j

QCD, Quenching and Partial- Quenching (2) (Bernard, Golterman, Sharpe) q v p p q v QCD Lie-Groups Graded Lie-Groups QQCD q ~ q PQQCD q v s Valence Ghost Sea

Partially Quenched cPT (3) s i f y ¯ e d w r t S U ( 2 ) v ­ g N a ( 2 ; 1 ) t ~ s b c 3 : 3 valence quarks 2 valence quarks, 1 sea quark 2 valence quarks, 1 ghost 2 valence quarks, 1 sea quark 2 valence quarks, 1 ghost

Partially Quenched cPT (4) B ° i j k » h Q ® ; a ¯ b c ¡ ² ( C 5 ) B i j k = ( ¡ ) 1 + ´ T Q ® ; a i ( x ) ¯ b y j ¡ ´ = ± 3 a t , ~ s b c e m d i n B j k u q l y o f h v r .

Partially Quenched cPT (5) s c o n t r u e d b v a h g f m N , a ~ t s b ¼ , Â

Proton Mass in PQQCD with Isospin-Symmetric Sea Quarks Singlet Axial Coupling DNp Coupling

Partially-Quenched Protons…. Mass Differences

Strong Isospin Breaking from Isospin Symmetric Lattices (S.Beane, K.Orginos, mjs ) Neutron-Proton Mass Difference : Quark mass differences , md-mu Electromagnetism Partially-Quenched Lattice Calculations + Theory Mn - Mp= 2.26+-0.57+-0.42+-0.10 MeV Due to md > mu

The END