Saline Soil.

Slides:



Advertisements
Similar presentations
Water Budget IV: Soil Water Processes P = Q + ET + G + ΔS.
Advertisements

S A L T M O D A computer program for the prediction of the salinity of soil moisture, ground water and drainage water, the depth of the water table, and.
Soil Salinity/Sodicity/Alkalinity and Nutrients
Antony Lenehan.  Site and soil  Effluent quality and quantity  Application systems- above ground or below ground  Crop/vegetation selection and.
LECTURE 11 Introduction to some chemical properties of soils : Factors affecting plant growth (3)
Gregg Carlson, David Clay, Doug Malo, Sharon Clay, and Cheryl Reese.
Electrical conductivity, EC A quick method to measure the salinity of water. EC is approximately one-tenth of the total dissolved cation, or anion concentration.
Irrigation and Water Quality Section F SWES 316.
5. Buffering capacity Soils high in SOM and clay minerals are more resistant to change in pH Sandy soils and highly weathered soils are least buffered.
The Punic Wars –Case for Salt in Soils “After the third punic war, the Romans stormed the town and the army went from house to house slaughtering the inhabitants.
Pesticide Properties. Runoff: movement of material away from application location over soil surface soil surface offsite.
Soil and Water Salinity Dissolved salts decrease the osmotic potential of soil water (which lowers the Total Soil Water Potential) a decrease in soil solution.
Drainage is the artificial removal of water from the cropped fields within the tolerance limit of the crops grown in the area under consideration.
Montana Soil Resources Montana Small Grain Guide.
Oak Hill Case Soil Physical Problems. Poor Drainage Surface Drainage Reflects the ease with which water can move downslope. Reflects access to catch.
LECTURE 10 Introduction to some chemical properties of soils : Factors affecting plant growth (2)
Scheduling irrigations for apple trees using climate data Ted Sammis Go to Home.
Scheduling irrigations for lettuce using climate data Ted Sammis.
Environmental chemistry
Making Electrical Conductivity Meaningful Gaylon Campbell Decagon Devices, Inc. Pullman, WA.
Crops to be Irrigated Factors for consideration
Drainage requirement in rice EndNext.  Rice is the most important food crop of the world.  Rice is a semi-aquatic plant and hence survives better under.
Soil Salinity Saline Soil Solution Cation Exchange and Colloidal Phenomena Mineral Weathering Boron Chemistry Irrigation Water Quality.
FRUIT GROWERS LABORATORY, INC. Darrell H. Nelson Horticulturalist.
In arid and semi-arid regions, agriculture is limited by the availibility of suitable irrigation water. Groundwater is the main source of irrigation and.
Soil. Chemistry Review Cation: atom that forms a positive charge (example: Ca +2 ) anion: atom that forms a negative charge (example: S -2 )
Subsurface drainage – Investigations
Irrigation Water Management An essential ingredient of irrigation system –design –operation VERY important when applying animal waste.
Soil Electrical Conductivity
Searching for Reasonable Solutions to an Imperfect Situation Charles Burt, P.E., Ph.D. March 14, 2005 SWRCB Hearing – SJ River Salinity.
IS DUAL CROPPING UNDER CENTRE PIVOTS A JUSTIFIABLE IRRIGATION PRACTICE? Leon Van Rensburg, JH Barnard, JB Sparrow, ATP Bennie and CC Du Preez Department.
Exchange Reactions Cation exchange Acid Soils Salt/Sodium Affected Soils Lecture 5.
SOIL WATER. IRRIGATION - artificial provision of water to support agriculture 70% of ALL FRESHWATER used by humans.
Emerging Sensor Technology for Soil Moisture, Temperature, and EC
Saline and Sodic Soils Chapter 10. This one. Percent yield on y-axis and increasing level of salinity on x-axis.
Global Change Impacts on Rice- Wheat Provision and the Environmental Consequences Peter Grace SKM - Australia Cooperative Research Centre for Greenhouse.
Salinisation Soil salinisation is one of the major threats in irrigation agriculture. Soil salinity causes yield losses and can lead to structural instability.
Soil Water Processes:Chapter 3 Learn how soil properties influence runoff, infiltration and plant growth. Learn how soil properties influence runoff, infiltration.
WATER LOGGING & SALINITY
You have learnt from the lessons in the earlier Modules that soil properties influence soil health. These soil properties in turn are affected by the agricultural.
MAZHAR ABBAS ag TH Agronomy University Of Agriculture Faisalabad
Unit A5-4 Plant Science. Problem Area 5 Initiating Plant Growth.
Soil Chapter 8 Acidic Soils & Salt Affected Soils Pages 229 – 262.
© 2011 Pearson Education, Inc. AP Environmental Science Mr. Grant Lesson 59 Lab: Soil Salinization Part 1.
Lecture 34 Leaching requirements - irrigation and drainage water quality recycling of drainage water for irrigation.
Avocado Irrigation – Special Topics
LWR 107 Soils in Dry Regions SOIL ALKALINITY. Causes of Alkalinity: Natural Vs Anthropogenic Characteristics and Problems of Alkaline Soils Development.
SOIL WATER MOVEMENT Naeem Kalwar Langdon Research Extension Center Abbey Wick Extension Soil Health Specialist Main Campus.
College of Agriculture & Life Sciences Arizona Cooperative Extension University of Arizona Paul Brown Charles Sanchez Kurt Nolte Irrigation Management.
SOIL REACTIONS, SOIL ACIDITY SOIL ALKALINITY, CONDUCTIVITY, REDOX POTENTIAL.
ADDRESSING SOIL ALKALINITY, SALINITY AND SODICITY
Name: manzoor nabi Course: forestry Roll no: 04 Acidic, Salic, And Alkali Soils MEWAR UNIVERSITY.
Master Seminar on Effect Of Salinity and Alkalinity on Physico-chemical Properties of soil Presented by Hemant Kumar M.sc. (previous) Deptt. of Soil Science.
Sanitary Engineering Lecture 4
Irrigation Water Quality & Influence on Crop Production Sam Taylor, March 2016.
Properties of Water Water molecule Water is Polar Water is a polar molecule that has a positively charged region as well as a negatively charged region.
Chapter 4 Section 2.
Irrigation and drainage 7.1Irrigation The most limiting factor to all year round food production in the tropics is lack of water in the dry season. This.
Soil water.
Soil water.
Chapter-3 CWR. Duty – Delta relation ship Base period
Exchange Reactions Cation exchange Acid Soils
Saline Soil.
IN THE NAME OF ALLAH, THE COMPASSIONATE, THE MERCIFUL
Water Quality Monitoring
Which affect the rate of photosynthesis
Chapter 4 Section 2.
Acids and Bases Bundle 4: Water.
Ground Water Basics continued
Glossary, Symbols and conversion formulae associated with salt affected soils.
Presentation transcript:

Saline Soil

Saline Soil الأملاح هي العامل الأساسي في استغلال أو عدم إستغلال الأراضي الزراعية حيث يعتمد نمو النباتات على نسبة تركيز الأملاح كلما كان مرتفعا زاد التأثير على نمو النباتات. وحدة التوصيل الكهربي تسمى mmhose/cm. يمكن أن نعبر عن تركيز الأملاح في الماء بوحدة التوصيل الكهربي التي يمكن التعبير عنها ب (mmhose/cm) أو (ppm) ppm = mg/L = gm/103L = gm/m3 mmhose/cm= 640 ppm

Saline Soil الأراضي الملحية الحمضية هي التي يكون التوصيل الكهربائي (EC) لمستخلص الماء لعينة منها عند درجة التشبع أكبر من (4mmhose/cm) ودرجة حرارة مئوية 25مئوية ويكون مقدار الحموضة (PH) لا يزيد عن 8.5. الأراضي القلوية هي التي يكون التوصيل الكهربائي (EC) لمستخلص الماء لعينة منها عند درجة التشبع أقل من (4mmhose/cm) ودرجة حرارة مئوية 25مئوية ويكون مقدار الحموضة (PH) بين 8.5 - 10.

Saline Soil Forms of Salts Occur in the Soil: 1- Salts ions dissolved in the soil water (the soil solution). 2- Cations adsorbed on the negatively charged surfaces of the soil particles (adsorption complex). 3- Precipitated salts.

Causes of Soil Salinity 1- قد تكون أملاح حمضية موجودة في التربة نفسها مثل أحماض الكربونات والكبريتات نتيجة تأثير عمليات النحر والتعرية التي تحدث على أجزاء المادة الأصلية للتربة الغير معرضة للسطح. 2- غمر الأراضي بمياه البحر المالحة أو ري الأراضي بمياه بها نسبة عالية من الأملاح. 3- عدم حصول الأرض على كمية من المياه بدرجة كافية لغسلها. 4- نتيجة إرتفاع المياه المالحة إلى أعلى بفعل الخاصية الشعرية ويتبخر الماء ويتبقى الأملاح. 5- قد تلقي المصانع بمخلفاتها في مياه الري مما يسبب زيادة نسبة الأملاح.

Salinity Problems Osmotic Problems: Toxicity Problems: - زيادة تركيز الأملاح في التربة يؤدي إلى زيادة الضغط الأسموزي له وبالتالي زيادة الإجهاد الرطوبي للتربة Soil moisture stress فيصعب على النبات سحب احتياجاته من المياه. Toxicity Problems: وجود بعض الأيونات الملحية (الكبريتات) بتركيز معين في التربة يؤدي إلى تلف الجذور وموت النبات. Dispersion Problems: زيادة تركيز بعض الأملاح (أملاح الصوديوم) في التربة يؤدي إلى تكون تربة قليلة النفاذية.

Reclamation of Saline Soil تعتمد فكرة إستصلاح الأراضي على المبادئ الأساسية التالية: 1- خفض محتوى الأملاح في منطقة نمو الجذور ومنع تكون أملاح جديدة. 2- خفض منسوب المياه الأرضية إلى أدنى منسوب يتناسب مع الظروف الحقلية. 3- إزالة العناصر والأملاح الذائبة في المياه الأرضية إلى المستوى الأدنى من التركيز المناسب لنمو النباتات. 4- استبدال الأملاح الغير قابلة للذوبان بأخرى يسهل غسلها والتخلص منها.

Leaching Requirements (LR) يعرف غسيل التربة هو عملية إضافة كميات كافية من الماء إلى التربة لغرض إذابة الأملاح القابلة للذوبان بالماء ثم تسرب الماء والأملاح نحو داخل التربة بإتجاه المصارف بعيدا عن منطقة الجذور. هو ذلك الجزء من مياه الري المطلوب تمريرها خلال منطقة جذور النباتات لمنع زيادة تركيز الأملاح عن حد معين. أو هي النسبة بين عمق مياه الصرف إلى عمق مياه الري ويعبر عنه كنسبة مئوية.

Factors Affecting (LR) 1- درجة تركيز الأملاح الموجودة في التربة. 2- درجة تركيز الأملاح الموجودة في المياه المستخدمة في غسيل التربة. 3- درجة تركيز الأملاح المطلوب الوصول إليها. 4- عمق التربة المراد غسيل الأملاح منها وهذا يتوقف على عمق الجذور. 5- نفاذية التربة. 6- مقدار البخر. 7- كفاءة نظام الصرف المستخدم. 8- طريقة الغسيل المتبعة ومواعيد الغسيل.

Salt Balance Equation Salt Input = Salt Output ECiw * Diw = ECdw * Ddw ECiw: Electric conductivity of the irrigation water (mmhos/cm) Diw: The volume of irrigation water added. ECdw: Electric conductivity of the drainage water (mmhos/cm) Ddw: The volume of drained water.

L.R. = (ECiw / ECdw)*100 = (Ddw /Diw)*100 Leaching Requirments Equation ECiw * Diw = ECdw * Ddw L.R. = (ECiw / ECdw)*100 = (Ddw /Diw)*100 The Assumption of L.R. Equation: 1- ماء الري يطبق بإنتظام على سطح التربة. 2- لايوجد سقوط للأمطار. 3- معامل التوصيل الهيدروليكي منتظم على كل المساحة الداخلية. 4- لايحدث تحرك للأملاح في موسم حصاد المحصول. 5- لا توجد نفاذية للملح داخل التربة.

Drainage Coefficient (q) In arid regions, the drainage coefficient (q) is highly variables. q depends on the following: 1- Amount of irrigation applied. 2- Method of irrigation and irrigation efficiency. 3- Leaching requirements.

q = (C*R) + [P or LR (the biggest)] * (1-C) * R q: Drainage Coefficient. (mm/day) C: Conveyance losses. R: Total application of water. P: Field application losses. R - q = consumptive use The quantity of salts accumulated (or removed) = total volume of drainage water * salt concentration.

fa = total porosity (f) – volumetric water content (θ) Drainable Porosity (fa) Drainable Porosity (fa): fa = total porosity (f) – volumetric water content (θ) Rate of water table rise = q mm/day / fa

Exaple (1) A- The salinity of ground water in an area of one hectare was 8 (mmhos/cm) and during a fallow season of 3monthes the rate of capillary rise was 8 mm/day. How much salts will be accumulated on the soil surface at the end of the fallow period? B- How many tons of salts are contained in irrigation water added to 5feddans during a crop season if the total crop water requirement is 1000m3/feddan and the salinity of irrigation water is 0.9 mmhos/cm?

Solution (1) A- Salt accumulated = total volume of drainage water * salt concentration. Salt accumulated = (8/1000)*3*30*10000*(8*640 / 106) = 36.864 ton B- Salt accumulated = 5 * 1000 * (0.9*640 / 106) = 2.88 ton

Exaple (2) The electric conductivity of irrigation water in an area is 0.35 mmhose/cm. If the salinity of drainage water is 2.0 mmhose/cm, what is the leaching requirement for this area? What will be the drainage rate if the irrigation requirement is 10 mm/day?

Solution (2) ECiw = 0.35 mmhose/cm ECdw = 2 mmhose/cm Diw =10 mm/day L.R. = (ECiw / ECdw)*100 = (Ddw /Diw)*100 = 0.35/2 =17.5% Diw =10 mm/day 0.35/2 = Ddw /10 Ddw =(0.35*10)/2 = 1.75mm/day

Example (3) Determine the drainage coefficient if the irrigation and conveyance efficiencies are 85% and 95% respectively and the quantity of irrigation is 20mm/day, and its salinity is 320ppm. The salinity of soil should not exceed 2mmhos/cm. What is the rate of water table rise due to this drainage coefficient, if the volumetric moisture content above and below the water table is 30% and 35% respectively?

Solution (3) q = (C*R) + [P or LR (the biggest)] * (1-C) * R Application efficiency = 85% → application losses (P) = 15% Conveyance efficiency = 95% → conveyance losses (C) = 5% Consumptive use = R – q = 20 mm/day LR = (ECiw / ECdw)*100 = [320 / (2*640)] * 100 = 25% > P q = (0.05 * R) + (0.25)(1-0.05)*R = 0.2875 R R = 20 + q q = 0.2875 (20 + q) q = 8 mm/day

Rate of water table rise = qmm/day / fa fa = total porosity (f) – volumetric water content (θ) fa = 0.35 – 0.3 = 0.05 Rate of water table rise = 8 / 0.05 = 160 mm/day

Example (4) What is the drainage coefficient in an irrigation project which grow wheat, maize, cotton with maximum crop requirements of 100, 210, 180 mm/month respectively? The field application losses is 20%, the conveyance losses is 10%, and irrigation water salinity is 1500 ppm. The yield of crop will be affected when the soil salinity is more than 4.0 mmhose/cm. What is the rate of water table rise due to this drainage coefficient if the drainable porosity is 5%?

Solution (4) Application losses (P) = 20%, Conveyance losses (C) = 10% Consumptive use = (100 + 120 + 180) / 30 = 13.3 mm/day LR = (ECiw / ECdw)*100 = [1500 / (4*640)] * 100 = 58.6% > P q = (C*R) + [P or LR (the biggest)] (1-C)*R q = (0.1*R) + (0.586)(1-0.1)*R = 0.6274 R R = 13.3 + q q = 0.6274 (13.3 + q) q = 22.4 mm/day Rate of water table rise = q mm/day / fa Rate of water table rise = 22.4 / 0.05 = 448 mm/day