Ten Years of Millisecond Pulsar Timing at Kalyazin

Slides:



Advertisements
Similar presentations
Decade of pulsar observations in Pushchino and Kalyazin Radio Astronomy observatory. V.A.Potapov, P.N.Lebedev Physical Institute of RAS, Pushchino Radio.
Advertisements

IUCAF SUMMER SCHOOL 2002 MITIGATION TECHNIQUES MITIGATION FACTORS - what is it? what is it good for? by Klaus Ruf.
Probing cosmic plasma with Giant Radio Pulses June 22, 2006 “Scattering and Scintillation in Radio Astronomy’’ Vladislav Kondratiev, Michael Popov, Vladimir.
Probing the field of Radio Astronomy with the SKA and the Hartebeesthoek Radio Observatory: An Engineer’s perspective Sunelle Otto Hartebeesthoek Radio.
RFI Subtraction with a reference horn… F. Briggs & M. Kesteven illustrations from Parkes Telescope… (Jon Bell et al.) origins in Int-Mit group at CSIRO.
Pulsar Timing with the GBT Scott Ransom National Radio Astronomy Observatory.
VSOP-2 Observations of Pulsars Carl Gwinn * With D.L. Jauncey 2, S. Dougherty 3, H. Hirabayashi 4, J.E. Reynolds 2, A. K. Tzioumis 2, E.A. King 2, B. Carlson.
Millimetron mision sensitivities and instrumentation concept
The Transient Universe: AY 250 Spring 2007 Existing Transient Surveys: Radio I: Pulsars Geoff Bower.
New observations of three AXPs at low radio frequencies Daria Teplykh & V.M. Malofeev, A.E. Rodin, S.V. Logvinenko. Pushchino Radio Astronomy Observatory.
Dakota Johnson, Tildon Johnson, Kyle Barker Rowan County Senior High School Mentor: Mrs. Jennifer Carter Abstract Data Analysis Acknowledgements Radio.
FAST Low Frequency Pulsar Survey Youling Yue ( 岳友岭 ) FAST Project, NAOC PKU Astrophysics Colloquium 2012.
PERSPECTIVES OF THE RADIO ASTRONOMICAL DETECTION OF EXTREMELY HIGH ENERGY NEUTRINOS BOMBARDING THE MOON R.D. Dagkesamanskii 1), I.M. Zheleznykh 2) and.
Lecture 1 By Tom Wilson.
Detection of Giant pulses from pulsar PSR B Smirnova T.V. Pushchino Radio Astronomy Observatory of ASC FIAN Pushchino Radio Astronomy.
Random Media in Radio Astronomy Atmospherepath length ~ 6 Km Ionospherepath length ~100 Km Interstellar Plasma path length ~ pc (3 x Km)
Long-term monitoring of RRAT J HU HuiDong Urumqi Observatory, NAOC July 27, 2009 Rotating Radio Transients Observation.
Submm & THz Masatoshi Ohishi NAOJ. June 4, 2010IUCAF Summer School Low  absorption  High O2O2O2O2 H2OH2OH2OH2O O2O2O2O2 H2OH2OH2OH2O.
Mean pulse profiles and spectra at the low frequencies Malov O.I., Malofeev V.M. Malov O.I., Malofeev V.M. Pushchino Radio Astronomy Observatory.
Molecular Gas and Dust in SMGs in COSMOS Left panel is the COSMOS field with overlays of single-dish mm surveys. Right panel is a 0.3 sq degree map at.
Pulsar Timing Phenomenology … an overview…. George Hobbs Australia Telescope National Facility.
Finding Fast Pulsars Today andTomorrow Pulsar Timing Array - A Nanohertz Gravitational Wave Telescope July 21-23, 2005 Jason Hessels McGill University.
National Time Service Center. CAS Time Standard and Ensemble Pulsar Time Scale Ding Chen, George & Bill, Dick, PPTA team 2011 年 5 月 9 日, Beijing.
Extragalactic Absorption Lines Observed from Arecibo Chris Salter (National Astronomy & Ionosphere Center, Arecibo Observatory, Puerto Rico)
Pulsar search and timing Pulsar search and timing 22/10/2011 INDIGO Bhal Chandra Joshi Bhal Chandra Joshi.
Single Pulse Investigations at the Decameter Range O.M. Ulyanov 1, V.V. Zakharenko 1, V.S. Nikolaenko 1, A. Deshpande 2, M.V. Popov 3, V.A. Soglasnov 3,
TYPE IV BURSTS AT FREQUENCIES MHz V.N. Melnik (1), H.O. Rucker (2), A.A. Konovalenko (1), E.P. Abranin (1), V.V. Dorovskyy(1), A. A. Stanislavskyy.
Present and future of pulsar research: the Italian contribute Alessandro Corongiu LIGO-G Z Gravitational Waves Advanced Detectors Workshop La.
Pulsar Studies at Urumqi Na Wang Urumqi Observatory, NAOC.
LOGO A Multi Unsymmetrical Beam Tapered Slot Ya-gi Antenna with λ/4 for PMMW Imaging  Presenter: Ya Chung Yu.
Vicky Kaspi, McGill University CIFAR AGM Why Do We Need More Radio Pulsars?  Want to build a `Pulsar Timing Array’ (PTA) to detect gravitational.
Radio Emissions of Magnetars & Observations at Nanshan Xinjiang Astronomical Observatory Yuan Jianping, Wang Na, Liu Zhiyong Outline  Introduction of.
RadioAstron space VLBI mission: early results. XXVIII GA IAU, Beijing, August RadioAstron space VLBI mission: early results. XXVIII GA IAU, Beijing,
Adaptive Filters for RFI Mitigation in Radioastronomy
The Very Small Array Angela Taylor & Anze Slosar Cavendish Astrophysics University of Cambridge.
Gravitational Wave and Pulsar Timing Xiaopeng You, Jinlin Han, Dick Manchester National Astronomical Observatories, Chinese Academy of Sciences.
Name EPOCH (Hz) (10 –12 s –2 ) Data Range (MJD) J (4)– (1)55666 – (7)– (5)55912.
ARENA-2005 THE UPPER LIMIT TO THE EHE NEUTRINO FLUX FROM OBSERVATIONS OF THE MOON WITH KALYAZIN RADIO TELESCOPE. A.R.Beresnyak, R.D.Dagkesamanskiy, A.V.Kovalenko.
Team Hulse James J. Joshua M. Daniel P. Adam P. James M. Shane J.
Interstellar turbulent plasma spectrum from multi-frequency pulsar observations Smirnova T. V. Pushchino Radio Astronomy Observatory Astro Space Center.
Radio Sounding of the Near-Sun Plasma Using Polarized Pulsar Pulses I.V.Chashei, T.V.Smirnova, V.I.Shishov Pushchino Radio Astronomy Obsertvatory, Astrospace.
Project P2445 – Four-Frequency High Precision Timing of a Millisecond Pulsar Ryan Shannon (PI, Graduate Student, Cornell University), with Jim Cordes,
Damien Parent – Moriond, February PSR J , PSR J , and their cousins -- young & noisy gamma ray pulsars Damien Parent on behalf of.
Single Dish Summer School, Green Bank 2007 Things to do with Single Dish: VLBI Tapasi Ghosh NAIC/Arecibo Observatory Outline: Interferometry Basic.
Diffraction scintillation at 1.4 and 4.85GHz V.M.Malofeev, O.I.Malov, S.A.Tyul’bashev PRAO, Russia W.Sieber Hochschule Nederrhein, Germany A.Jessner, R.Wielebinski.
IPS Observations Using the Big Scanning Array of the Lebedev Physical Institute: Recent Results and Future Prospects I.V.Chashei, V.I.Shishov, S.A.Tyul’bashev,
Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array ngVLA: Reconfigurability.
First result with PAF on a big single-dish radio telescope X. Deng, A. Chippendale, S. Johnston, G. Hobbs, D. George, R. Karuppusamy ASTRONOMY AND SPACE.
Monitoring of interplanetary and ionosphere scintillations at the frequency 111MHz S.A.Tyul’bashev, V.I.Shishov, I.V.Chashei, I.A.Subaev Pushchino Radio.
Brennan Hughey for the LIGO and Virgo Collaborations
p no Bhaswati Bhattacharyya On behalf of GHRSS team
RFI Protection Activities in IAA RAS
Interplanetary scintillation of strong sources during the descending phase near the minimum of 23 solar activity cycle Chashei I1., Glubokova1,2 S., Glyantsev1,2.
RFI Protection Activities in IAA RAS
The Arecibo Observatory
Sergei A. Trushkin , Sergei N. Fabrika, Peter G. Tsybulev
Searching FRB with Jiamusi-66m Radio Telescope
Observing Strategies for the Compact Array
Introduction to Using Radio Telescopes
Gravitational Waves and Pulsar Timing
An Arecibo HI 21-cm Absorption Survey of Rich Abell Clusters
NANOGrav Long-term timing of two faint millisecond pulsars at Arecibo
Pulsar and Transient Science with the 12m Antenna
Weak microlensing effect and stability of pulsar time scale
NRAO-GB Support for VSOP-2
Welcome to the 4th NAIC-NRAO School on Single Dish Radio Astronomy
Improving Pulsar Timing
GBT Status: Current Observing Capabilities
Polarization Properties of an Eclipsing Pulsar
ALFA Pulsar Surveys: Searching for Laboratories of Extreme Physics
Presentation transcript:

Ten Years of Millisecond Pulsar Timing at Kalyazin Yu.P. Ilyasov and V.V. Oreshko Pushchino Radio Astronomical Observatory (PRAO) of the Lebedev Physical Institute, Russia IAU Commission 31 “Time” Prague, 21.08.2006

Precise timing of millisecond binary pulsars was started at Kalyazin radio astronomical observatory since 1995. (Tver’ region, Russia -37.650 EL; 57.330 NL). Binary pulsars: J0613-0200, J1020+10, J1640+2224, J1643-1224, J1713+0747, J2145-0750, as well as isolated pulsar B1937+21, are belong to Kalyazin Pulsar Timing Array (KPTA). The Backer’s pulsar B1937+21 is being monitored at Kalyazin observatory (PRAO, Lebedev Phys.Inst., Russia-0.6 GHz) and Kashima space research centre (KSRC, NICT, Japan-2.2 GHz) simultaneously from 1996. Main aim is: a) to study Pulsar Time and to establish long life space ensemble of clocks could be alternative to atomic standards; b)     to detect gravitational waves extremely low frequency belong to the Gravity Wave Background – GWB.

Radio Telescope RT-64 (Kalyazin, Russia) Main reflector diameter 64 m Secondary reflector diameter 6 m RMS (surface) 0.7 mm Feed – Horn (wideband) 5.2 x 2.1 m Frequency range 0.5 – 15 GHz Antenna noise temperature 20K Total Efficiency (through range) 0.6 Slewing rate 1.5 deg/sec Receivers for frequency: 0.6; 1.4; 1.8; 2.2; 4.9; 8.3 GHz

pulsar Integrated pulse profile of PSR J2145-0750 on monitor screen Radio Telescope RT-64 (Kalyazin) Local time service facilities and filter-bank receiver 160 channels

Mean Pulse Profiles of Kalyazin Pulsar Timing Array (KPTA) at 600 MHz by 64-m dish and filter-bank receiver

Residuals of Millisecond Pulsars :B1937+21, J0613-0200, J1640+2224, J1643-1224, J1713+0747, J2145-0750

Residuals and Allan Variance of PSR : B1937+21 (upper),J1640+2224 LONG TIME INTERVAL RESIDUALS and ALLAN VARIANCE of PSR: J1640+2224, B1937+21 from KALYAZIN TIMING Residuals and Allan Variance of PSR : B1937+21 (upper),J1640+2224 (Kalyazin timing at 0.6 GHz)

Allan Variance of Millisecond Pulsar B1937+21 and other Time Standards After ten years monitoring of B1937+21 its timing noise is looking as “white phase noise” with RMS about 1.8 s.( Fractional instability is about 6.10-15). After these data and timing results of binary pulsar J1640+2224 gravitational natural GWB upper limit should be reduced till to less than gh2 <10-7 - 10-9 . Secular changes of DM toward millisecond pulsar B1937+21 were revealed after long time two frequency timing observations (Kalyazin – 0,6 and Kashima – 2.3 GHz). 

Millisecond Reference Pulsars Round the Sky Distribution Combined Pulsar Timing Array (PTA): Kalyazin (ITCRF - ?proto frame?) Parkes

RMS of TOA Measurement of Millisecond Pulsar B1937+21 ПОГРЕШНОСТЬ ИЗМЕРЕНИЯ МПИ PSR 1937+21 (Шитов Ю.П.,1989) ns RТ – 64 f = 0,05f, t = 30min N = 1,2•106 (pulses number) 1000 100 ns δt δION 10 ns δISM δIPP GHz 0.2 0.32 0.6 1.0 1.4 δIPP - interplanetary plasma δISM - interstellar medium δt – total RMS δION - ionosphere (Ilyasov Yu. et al.1989, Lebedev Phys. Inst. Proceeding)

Preferred pulsars for Timing Array PSR P ms Pdot 10-15 s/s Pb day DM pk cm-3 S400 mJy S600 S1400 S3000  spectral index B1855+09 5.3625 1.78 10-5 12.327 13.309 31 (16.3) 4.3 1.5 -1.6 B1937+21 1.5577 1.05 10-4 ---. 71.040 240 (100) 16 4.0 -2.2 J1640+2224 3.1633 2.8 10-6 175.46 18.426 37 (16) 3 0.7 -2.1 J1713+0750 4.5701 8.53 10-6 67.825 15.989 36 0.8 -2.0 Next bands are allocated to radio astronomy in decimeter wavelengths range (Radio Regulations): 406.10 - 410.0 MHz (Primary allocation (P)); 608.00 - 614.0 MHz ((P) - Region 2 & Secondary (S) - Region 1)); 1400.0 - 1427.0 MHz ((P) and Passive (Pas)); 2690.0 - 2700.0 MHz ((P) &(Pas)). Recommended bands for Pulsar Timing could be: 1400 - 1427 MHz coupled with either 608.0 – 614.0 or 406.1 - 410.0 MHz.

Ppeak  Synchronous Integration Detrimental Threshold Level Psa T-system noise temperature, B-bandwidth, k- Boltzmann’s constant, N-integration cycle number,  - time constant. Detrimental impulse interference level Ppeak, acting only in time ti synchronous with pulsar period P ! D = ti/P Ppeak  t - integration time of observation (N= t/P) Spectral flux density of detrimental synchronous impulse interference S peak :

Threshold Impulse Interference Level PSR P ms f MHz B T=TA+TR K Impulse interference Continuous interference Pulsenterference Ppk (dBW) Flux-Density SpkB (dB(W/m2 Spectral Spk (dBW/(m2 Рz) Flux-Density ** Sm (dBW/(m2 Hz) B1855+09 5.3621 408 3.9 203.0 -127.5 -126.1 -132.7 -137.7 611 6.0 112.0 -129.1 -127.4 -134.2 -139.2 1413 27.0 26.4 -132.1 -129.6 -137.0 -142.0 2695 10.0 21.3 -135.2 -132.2 -144.2 B1937+21 1.5578 3.9. 151.0 -123.4 -122.0 -129.5 -134.5 93.0 -124.6 -122.9 -129.7 -134.7 24.1 -127.2 -125.8 -133.2 -138.2 20.8 -130.0 -127.0 -134.0 -139.0 J1640+2224 3.1633 92.0 -128.6 -133.8 -138.8 72.0 -128.7 21.4 -130.8 -128.4 -135.8 -140.8 20.3 -133.1 -130.1 -137.1 -142.1 J1713+0750 4.5701 130.0 -127.3 -133.9 -138.9 85.0 -128.9 -126.3 -138.1 23.1 -130.4 -127.9 -135.3 -140.3 20.6 ** Number of cycles N = t/P; integration time t = 3000 s; time constant  = 0.01 P; syncronous pulse interference D =0.1

Signal to Noise Ratio (SNR) Pulsars of Timing Array (Aef = 2000 sq Signal to Noise Ratio (SNR) Pulsars of Timing Array (Aef = 2000 sq.m, t observ. = 3000 s , Tsyst (previous Table)) PSR P ms f MHz B MHz Ts=(TA+TR )K S mJy SNR B1855+09 5.3621 408 3.9 203.0 31 12.0 611 6.0 112.0 (16.3) 14.4 1413 27.0 26.4 4.3 33.6 2695 10.0 21.3 1.5 8.8 B1937+21 1.5578 3.9. 151.0 240 124.6 93.0 (100) 104.5 24.1 16 136.9 20.8 4.0 J1640+2224 3.1633 92.0 37 31.5 72.0 (16) 21.6 21.4 3 28.9 20.3 0.7 J1713+0750 4.5701 130.0 36 21.7 85.0 18.3 23.1 26.8 20.6 0.8 4.9

CONCLUSION One of the most appropriate pulsars now are B1937+21, J1640+2224, J1713+0750 and B1855+09. They can be used as high-stable reference space clocks with the final goal of providing a new long – term stable time-scale. Most of leading radio astronomical observatory in the world now are involved in pulsar timing (Arecibo, Jodrell Bank, Kalyazin, Kashima, Medone, NRAO GBT, Parkes). High precision timing observations of reference millisecond pulsars, assigned for precision timekeeping as space astronomical reference clocks, can be made in preferred frequency band, allocated for the radio astronomy service band 1400-1427MHz, and either 400-406 or 608-614 MHz. The detrimental threshold level for precise pulsar timing are the same which defines by Recommendation ITU-R for single-dish continuum observations. Long-term timing monitoring of very stable reference pulsars by the largest radio telescopes in the world should be encouraged with the goal to provide the International Time Celestial Reference Frame (ITCRF), in particular for space navigation. Time scale based upon reference pulsars could be established to provide a new astronomical time scale with high long-term stability.