IBM CPLEX Global Non-Convex MIQP

Slides:



Advertisements
Similar presentations
1 LP, extended maxflow, TRW OR: How to understand Vladimirs most recent work Ramin Zabih Cornell University.
Advertisements

Solve a System Algebraically
Using linear programming to solve discrete problems
Optimization problems using excel solver
Branch-and-Bound Technique for Solving Integer Programs
Solving LP Models Improving Search Special Form of Improving Search
Integer Programming Kusdhianto Setiawan Gadjah Mada University.
© Imperial College London Eplex: Harnessing Mathematical Programming Solvers for Constraint Logic Programming Kish Shen and Joachim Schimpf IC-Parc.
Integer linear programming Optimization problems where design variables have to be integers are more difficult than ones with continuous variables. The.
Engineering Optimization
MS&E 211 Quadratic Programming Ashish Goel. A simple quadratic program Minimize (x 1 ) 2 Subject to: -x 1 + x 2 ≥ 3 -x 1 – x 2 ≥ -2.
Optimization of thermal processes2007/2008 Optimization of thermal processes Maciej Marek Czestochowa University of Technology Institute of Thermal Machinery.
Binh research 08 Dec 2009 Working on ST and non-convex time stepper within Bullet DONE with initial solver for frictionless ST. Working on non-convex time.
Discrete Optimization Shi-Chung Chang. Discrete Optimization Lecture #1 Today: Reading Assignments 1.Chapter 1 and the Appendix of [Pas82] 2.Chapter 1.
Easy Optimization Problems, Relaxation, Local Processing for a small subset of variables.
Computational Methods for Management and Economics Carla Gomes Module 6b Simplex Pitfalls (Textbook – Hillier and Lieberman)
Linear Programming Special Cases Alternate Optimal Solutions No Feasible Solution Unbounded Solutions.
Computational Methods for Management and Economics Carla Gomes
1 Multiple Kernel Learning Naouel Baili MRL Seminar, Fall 2009.
Easy Optimization Problems, Relaxation, Local Processing for a small subset of variables.
Lift-and-Project cuts: an efficient solution method for mixed-integer programs Sebastian Ceria Graduate School of Business and Computational Optimization.
LP formulation of Economic Dispatch
COMPARISONS 64-bit Intel Xeon X Ghz processors –12 processors sharing 48 GB RAM –Each BARON run restricted to single processor All experiments.
COMPARISONS 64-bit Intel Xeon X Ghz processors –12 processors sharing 48 GB RAM –Each BARON run restricted to single processor All experiments.
Ramprasad Yelchuru, MIQP formulations for optimal controlled variables selection in Self Optimizing Control, 1/16 MIQP formulation for optimal controlled.
Towards a Fast Heuristic for MINLP John W. Chinneck, M. Shafique Systems and Computer Engineering Carleton University, Ottawa, Canada.
Optimization for Operation of Power Systems with Performance Guarantee
Operations Research Assistant Professor Dr. Sana’a Wafa Al-Sayegh 2 nd Semester ITGD4207 University of Palestine.
MILP algorithms: branch-and-bound and branch-and-cut
Mathematical Models & Optimization?
FATCOP: A Mixed Integer Program Solver Michael FerrisQun Chen University of Wisconsin-Madison Jeffrey Linderoth Argonne National Laboratories.
2.1 – Linear and Quadratic Equations Linear Equations.
IE 312 Review 1. The Process 2 Problem Model Conclusions Problem Formulation Analysis.
Chapter 6 Optimization Models with Integer Variables.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2010 Lecture 9 Tuesday, 4/20/10 Linear Programming 1.
Discrete Optimization
Sebastian Ceria Graduate School of Business and
CPS Brief introduction to linear and mixed integer programming
MGTSC 352 Lecture 15: Aggregate Planning Altametal Case
Bounded Nonlinear Optimization to Fit a Model of Acoustic Foams
EMIS 8373: Integer Programming
Integer Programming An integer linear program (ILP) is defined exactly as a linear program except that values of variables in a feasible solution have.
Optimization Problems
Solver & Optimization Problems
Consistency Methods for Temporal Reasoning
Role and Potential of TAs for Industrial Scheduling Problems
The CPLEX Library: Mixed Integer Programming
EMGT 6412/MATH 6665 Mathematical Programming Spring 2016
Ramprasad Yelchuru Sigurd Skogestad Henrik Manum
MILP algorithms: branch-and-bound and branch-and-cut
Gomory Cuts Updated 25 March 2009.
Chapter 4 Linear Programming: The Simplex Method
#post_modern Branch-and-Cut Implementation
The ABC’s of Optimization
Chap 3. The simplex method
MIP Tools Branch and Cut with Callbacks Lazy Constraint Callback
Part 3. Linear Programming
Pseudo-Boolean Optimization
Instructors: Fei Fang (This Lecture) and Dave Touretzky
Linear Programming and Approximation
Compute convex lower bounding function and optimize it instead!
Brief introduction to linear and mixed integer programming
Matteo Fischetti, University of Padova
ENGM 435/535 Integer Programming.
L18 LP part4 Homework Review Summary Test 3.
Part 3. Linear Programming
Intersection Cuts from Bilinear Disjunctions
Integer LP: Algorithms
Intersection Cuts for Quadratic Mixed-Integer Optimization
Linear Constrained Optimization
Presentation transcript:

IBM CPLEX Global Non-Convex MIQP Christian Bliek & Pierre Bonami

Quadratic Program (QP) Global Non-Convex MIQP Quadratic Program (QP) Standard form Convex or Positive Semi-Definite Indefinite

Non-Convex QP Local optimum Available since IBM CPLEX 12.3 Global Non-Convex MIQP Non-Convex QP Local optimum Available since IBM CPLEX 12.3 Interior Point Algorithm Solution target Parameter FIRSTORDER

Local Non-Convex QP Benchmark Global Non-Convex MIQP Local Non-Convex QP Benchmark Performance Cplex versus Ipopt with Wsmp

Non-Convex MIQP Global optimum NEW in CPLEX 12.6 Branch and Bound Global Non-Convex MIQP Non-Convex MIQP Global optimum NEW in CPLEX 12.6 Branch and Bound

Global Non-Convex MIQP Example Local Optimum Global Optimum 6

Global Non-Convex MIQP Global Non-Convex QP Even if Q has only 1 negative eigenvalue, Non-Convex QP is NP-hard Checking if a feasible solution is not a local minimum is NP-complete Checking if a Non-Convex QP is unbounded is NP- complete

Overview We consider 2 formulations Original Factorized Eigenvalue Global Non-Convex MIQP Overview We consider 2 formulations Original Factorized Eigenvalue

Factorized Eigenvalue Formulation Global Non-Convex MIQP Factorized Eigenvalue Formulation

Factorized Eigenvalue Formulation Global Non-Convex MIQP Factorized Eigenvalue Formulation

Factorized Eigenvalue Formulation Global Non-Convex MIQP Factorized Eigenvalue Formulation

Factorized Eigenvalue Formulation Global Non-Convex MIQP Factorized Eigenvalue Formulation

Factorized Eigenvalue Formulation Global Non-Convex MIQP Factorized Eigenvalue Formulation

Factorized Eigenvalue Formulation Global Non-Convex MIQP Factorized Eigenvalue Formulation Advantage Sparse Efficient Proper identification of negative eigenvalues

Example Original Formulation Factorized Eigenvalue Formulation Global Non-Convex MIQP Example Original Formulation Factorized Eigenvalue Formulation

Overview We consider 2 formulations Original Factorized Eigenvalue Global Non-Convex MIQP Overview We consider 2 formulations Original Factorized Eigenvalue

Overview We consider 2 formulations Original Factorized Eigenvalue Global Non-Convex MIQP Overview We consider 2 formulations Original Factorized Eigenvalue Automatically select most promising one

Overview We consider 2 formulations Original Factorized Eigenvalue Global Non-Convex MIQP Overview We consider 2 formulations Original Factorized Eigenvalue Automatically select most promising one Do Term by Term McCormick Relaxation

Relaxation of Non-Convex MIQP Global Non-Convex MIQP Relaxation of Non-Convex MIQP

Relaxation of Non-Convex MIQP Global Non-Convex MIQP Relaxation of Non-Convex MIQP Relaxation of individual Non-Convex quadratic terms using McCormick envelopes 20

Overview We consider 2 formulations Original Factorized Eigenvalue Global Non-Convex MIQP Overview We consider 2 formulations Original Factorized Eigenvalue Automatically select most promising one Do Term by Term McCormick Relaxation

Overview We consider 2 formulations Original Factorized Eigenvalue Global Non-Convex MIQP Overview We consider 2 formulations Original Factorized Eigenvalue Automatically select most promising one Do Term by Term McCormick Relaxation Branch and Bound

Branching for Non-Convex MIQP Global Non-Convex MIQP Branching for Non-Convex MIQP Branch on continuous variables and update envelopes 23

Other Ingredients QP simplex for convex QP relaxation Global Non-Convex MIQP Other Ingredients QP simplex for convex QP relaxation Pseudocost branching Local interior point solver for incumbents Bound strengthening Detection of unboundedness Linearize quadratic terms involving binaries

Global Non-Convex QP Benchmark Global Non-Convex MIQP Global Non-Convex QP Benchmark internal non-convex miqp testset globallib GAMS minlp.org boxqp From miqp testset generated 50% mixed miqp set Comparison with SCIP and Couenne on 1 thread

Global Non-Convex QP Benchmark Global Non-Convex MIQP Global Non-Convex QP Benchmark CPLEX versus SCIP on individual testsets

Global Non-Convex QP Benchmark Global Non-Convex MIQP Global Non-Convex QP Benchmark CPLEX versus SCIP and Couenne on combined testset

Global Non-Convex QP Benchmark Global Non-Convex MIQP Global Non-Convex QP Benchmark CPLEX versus SCIP and Couenne on combined testset

Global Non-Convex QP Benchmark Global Non-Convex MIQP Global Non-Convex QP Benchmark CPLEX 1 versus 4 threads on combined testset

How to use it Available in CPLEX 12.6 Global Non-Convex MIQP How to use it Available in CPLEX 12.6 By default Non-Convex MIQP are not accepted Set Solution Target Parameter to OPTIMALGLOBAL

Global Non-Convex QP Benchmark Global Non-Convex MIQP Global Non-Convex QP Benchmark CPLEX versus SCIP and Couenne on combined testset