Photon Detection Efficiency in the CsI-based HADES RICH

Slides:



Advertisements
Similar presentations
USE OF GEANT4 FOR LHCB RICH SIMULATION S. Easo, RAL, LHCB AND ITS RICH DETECTORS. TESTBEAM DATA FOR LHCB-RICH. OVERVIEW OF GEANT4 SIMULATION.
Advertisements

Drift velocity Adding polyatomic molecules (e.g. CH4 or CO2) to noble gases reduces electron instantaneous velocity; this cools electrons to a region where.
E/π identification and position resolution of high granularity single sided TRD prototype M. Târzilă, V. Aprodu, D. Bartoş, A. Bercuci, V. Cătănescu, F.
Peter Križan, Ljubljana Peter Križan University of Ljubljana and J. Stefan Institute The HERA-B RICH counter.
Preliminary Quintuple GEM CsI Ring Imaging Cherenkov Detector S.A. Zajac*, T.K. Hemmick*, K. Dehmelt*, T.E. Videbaek*, & M.A. Blatnik** *Stony Brook University.
Studies of solid high-power targets Goran Skoro University of Sheffield HPT Meeting May 01 – 02, 2008 Oxford, UK.
Status of the MICE SciFi Simulation Edward McKigney Imperial College London.
Off-axis Simulations Peter Litchfield, Minnesota  What has been simulated?  Will the experiment work?  Can we choose a technology based on simulations?
30 March Global Mice Particle Identification Steve Kahn 30 March 2004 Mice Collaboration Meeting.
IMPACT OF WATER OPTICAL PROPERTIES ON RECONSTRUCTION: HINTS FROM THE OB DATA. A PRELIMINARY STUDY ANTARES Collaboration Meeting CERN, February 07 th -10.
PERFORMANCE OF THE DELPHI REFRACTOMETER IN MONITORING THE RICH RADIATORS A. Filippas 1, E. Fokitis 1, S. Maltezos 1, K. Patrinos 1, and M. Davenport 2.
1 Cluster Quality in Track Fitting for the ATLAS CSC Detector David Primor 1, Nir Amram 1, Erez Etzion 1, Giora Mikenberg 2, Hagit Messer 1 1. Tel Aviv.
Beam Loss Analysis Tool for the CTF3 PETS Tank M. Velasco, T. Lefevre, R. Scheidegger, M. Wood, J. Hebden, G. Simpson Northwestern University, Evanston,
Jianchun Wang, Syracuse UniversityDPF conference, Jan 7, CLEO III RICH Detector and Test Beam Results J.C.Wang representing M.Artuso, R.Ayad, F.Azfar,
The UC Simulation of Picosecond Detectors Pico-Sec Timing Hardware Workshop November 18, 2005 Timothy Credo.
STS Simulations Anna Kotynia 15 th CBM Collaboration Meeting April , 2010, GSI 1.
RICH PylosR. Gernhäuser (TU-München) The HADES RICH High Acceptance Di-Electron Spectrometer The HADES Spectrometer Special requirements RICH setup.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Tracking within hadronic showers in the SDHCAL Imad Laktineh.
A Reconstruction Algorithm for a RICH detector for CLAS12 Ahmed El Alaoui RICH Workchop, Jefferson Lab, newport News, VA November th 2011.
Status of DRIFT II Ed Daw representing the DRIFT collaboration: Univ. of Sheffield, Univ. of Edinburgh, Occidental College, Univ. of New Mexico Overview.
May 31, 2008 SuperB PID sessionMarko Starič, Ljubljana Marko Starič J. Stefan Institute, Ljubljana Report on hardware tests and MC studies in Ljubljana.
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
Measurement of Gas Bremsstrahlung at the Pohang Light Source Hyosang Lee Seoul National University, Q2C Pusan National University, HANUL HNP2011.
March 2006R. Gernhäuser (TU-München) The HADES Experiment Geometry: Full azimuth, polar angles 18 o - 85 o Pair acceptance ~ 0.35 Momentum reconstruction:
T. Sugitate / Hiroshima / PHX031 / Nov.01 The Photon Spectrometer for RHIC and beyond PbWO 4 Crystal Density 8.29 g/cm 3 Radiation length 0.89 cm Moliere.
work for PID in Novosibirsk E.A.Kravchenko Budker INP, Novosibirsk.
1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe.
1 Lead glass simulations Eliane Epple, TU Munich Kirill Lapidus, INR Moscow Collaboration Meeting XXI March 2010 GSI.
AMS-RICH Detector. J. Berdugo – CIEMAT (Madrid, Spain) 1 AMS-02 Phase II Flight Safety Review AMS Ring Imaging CHerenkov PURPOSE: 1.Precise measurement.
The 21st International Conference on Ultrarelativistic nucleus-nucleus collisions, March 30 – April 4, Knoxville, TN Results from cosmics and First LHC.
Simulations Report E. García, UIC. Run 1 Geometry Radiator (water) 1cm x 2cm x 2cm with optical properties Sensitive Volume (hit collector) acrylic (with.
Hadron production in C+C at 1 and 2 A GeV analysis of data from experiments NOV02 and AUG04 for high resolution tracking (Runge-Kutta tracks) Pavel Tlustý,
Status Report particle identification with the RICH detector Claudia Höhne - GSI Darmstadt, Germany general overview focus on ring radius/ Cherenkov angle.
The RICH Detectors of the LHCb Experiment Carmelo D’Ambrosio (CERN) on behalf of the LHCb RICH Collaboration LHCb RICH1 and RICH2 The photon detector:
Mauro Iodice INFN Roma (Italy) Hall A Collaboration Meeting - JLAB May 18, 2004.
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
Radia Sia Syracuse Univ. 1 RICH 2004 Outline:  The CLEO-III RICH Detector  Physics Requirements  CLEO-III RICH at work… Performance of the CLEO-III.
Christian Lippmann (ALICE TRD), DPG-Tagung Köln Position Resolution, Electron Identification and Transition Radiation Spectra with Prototypes.
HMPiD upgrade variant; simulation status N. Smirnov Physics Department, Yale University, May, 06. CERN visit.
A Highly Selective Dilepton Trigger System Based on Ring Recognition Alberica Toia II Physikalisches Institut Justus-Liebig-Universität Gießen, Germany.
Tests of a proximity focusing RICH with aerogel as radiator and flat panel PMT (Hamamatsu H8500) as photon detector Rok Pestotnik Jožef Stefan Institute,
Quality-evaluation of Cesium Iodide photocathodes for the ALICE/High Momentum Particle Identification detector by means of a VUV-Scanner system Herbert.
David Silvermyr Lund University for the PHENIX Collaboration Early global event results using the PHENIX Pad Chambers at RHIC.
Il Ring Imaging CHerenkov (RICH) detector a Jefferson Lab – Hall A.
Hadron production in C+C at 1 and 2 A GeV analysis of data from experiments NOV02 and AUG04 for high resolution tracking (Runge-Kutta tracks) Pavel Tlustý,
Electromagnetic Calorimeter for HADES at SIS100 Pavel Tlustý, NPI Řež Motivation Plans Current status Tests Outlook HADES Collaboration Meeting, Sesimbra,
Hadron production in C+C at 2 A GeV measured by the HADES spectrometer Nov02 gen3 analysis and results for spline tracks (shown in Dubna) changes - removing.
J.Pietraszko, HADES Coll. Meeting, GSI Nov ,  – electron multiplicity measured in HADES W. Koenig, Jerzy Pietraszko, T. Galatyuk, V. Pechenov,
Status report FRM2 In-Kind Contribution: a 10 B-based gas detector with macrostructured multilayers Irina Stefanescu, Yasin Abdullahi, Ilario Defendi,
Performance of 1600-pixel MPPC for the GLD Calorimeter Readout Jan. 30(Tue.) Korea-Japan Joint Shinshu Univ. Takashi Maeda ( Univ. of Tsukuba)
Focusing Aerogel RICH Optimization A.Yu.Barnyakov, M.Yu.Barnyakov, V.S.Bobrovnikov, A.R.Buzykaev, V.V.Gulevich, S.A.Kononov, E.A.Kravchenko, A.P.Onuchin.
for the HADES Collaboration
Activities on straw tube simulation
First steps on optimising RICH analysis
Present Read Out Chain for the PANDA Barrel DIRC
Commissioning of the ALICE HLT, TPC and PHOS systems
LAV simulation with Geant4
KM2A Electron Detector Optimization
Power pulsing of AFTER in magnetic field
Ioannis Manthos Laboratory of Nuclear & Particle Physics
Simulation results for the upgraded RICH detector in the HADES experiment. Semen Lebedev1,3, Jürgen Friese2, Claudia Höhne1, Tobias Kunz2, Jochen Markert4.
Measurement of p0 – induced single leptons in the HADES RICH
Digital Processing Techniques for Transmission Electron Microscope Images of Combustion-generated Soot Bing Hu and Jiangang Lu Department of Civil and.
The Pixel Hybrid Photon Detectors of the LHCb RICH
High Rate Photon Irradiation Test with an 8-Plane TRT Sector Prototype
Pre-installation Tests of the LHCb Muon Chambers
Beam Test Results for the CMS Forward Pixel Detector
Performance test of a RICH with time-of-flight information
Presentation transcript:

Photon Detection Efficiency in the CsI-based HADES RICH Description of the HADES RICH OEM Measurement Single Photon Response N0 Calculation Summary L. Fabbietti (TU-München)

Single Photon Response is CRUCIAL The RICH Detector C + C @1 AGeV Lepton Rings Photon Detector : CH4 MWPC CsI cathode 28.600 pads 10 ms readout Single Photon Response is CRUCIAL L. Fabbietti (TU-München)

Efficiency Calibration (Online Efficiency Measurement (OEM)) Calibrated light source ! Photons produced by 600 AMeV 12C beam particles passing two different solid radiators n(l) -> QC(l) 1 0.8 0.6 0.4 0.2 0.0 SiO2 MgF2 Transmission 120 140 160 180 200 220 l [nm] L. Fabbietti (TU-München)

OEM Radiator beam beam line 2cm L. Fabbietti (TU-München)

Single Particle Response Nph ~ N0 * Z2 100 evt accumulated single 12C hit beam pipe shadow SiO2 MgF2 L. Fabbietti (TU-München)

Single Photon Response of MWPC wires 1 Event Single Photon Pattern Pad Y Coordinate Pulse Height 6 mm 6 mm Pad X Coordinate Q Mean = 7 * 10 4 e- eSE ~ 90% Photon Candidates : Local Maxima in an isolated 3X3 Pattern Single Pads below Threshold (4 s) and Charge Particle are cleaned L. Fabbietti (TU-München)

Coupling to Neighbouring Pads Along the wire  photon impact resolution ~ 0.5 mm Perpendicular to wire L. Fabbietti (TU-München)

Charge Distribution of Single Photons Simulation Experiment single photon response well understood L. Fabbietti (TU-München)

Simulation Input (HGeant) OEM Analysis Experimental Data Simulation Input (HGeant) C@600 AMeV 100 Events N0=102 Beam pipe shadow Optical parameters (all independently measured) Simulation of single photon response Electronic noise L. Fabbietti (TU-München)

Wave Length Resolved Efficiency Simulation Experiment Sector 2 MgF2 Radiator 150 nm 205 nm 145 nm 163 nm SIO2 Radiator MgF2 SiO2 Q l L. Fabbietti (TU-München)

N0 Calculation Translation to HADES C4F10 Radiator L. Fabbietti (TU-München)

N0 Results Sector 1 MgF2 SiO2 Sector 2 Sector 3 MgF2 SiO2 Sector 6 102 Experimental Results extracted from the April 2002 data: C @ 600 AMeV Sector 1 MgF2 SiO2 Sector 2 Sector 3 MgF2 SiO2 Sector 6 102 82 114 97 94 122 150 ?? L. Fabbietti (TU-München)

Conclusions and Outlook We have developed a powerful online efficiency measurement for the HADES Rich detector. The analysis of the single photon response has allowed to develop an heuristic model for the simulations. The quantitative comparison between experimental and simulated data enables an estimation of the figure of merit N0 for each sector of the HADES RICH detector. The OEM measurement is going to be repeated during the next experiment, to monitor the time evolution of the detector efficiency. Munich RICH group :T.Christ, T.Eberl, L.Fabbietti, J.Friese, R. Gernhaeuser, L.Maier, B.Sailer and S.Winkler. L. Fabbietti (TU-München)