PHYS 1443 – Section 003 Lecture #16

Slides:



Advertisements
Similar presentations
PHYS 1441 – Section 002 Lecture #18 Wednesday, April 3, 2013 Dr. Jaehoon Yu Collisions Elastic Collisions Perfectly Inelastic Collisions Concept of the.
Advertisements

PHYS 1441 – Section 002 Lecture #20 Wednesday, April 10, 2013 Dr. Jaehoon Yu Equations of Rotational Kinematics Relationship Between Angular and Linear.
Phy 211: General Physics I Chapter 10: Rotation Lecture Notes.
Chapter 8: Rotational Kinematics Lecture Notes
Wednesday, Oct. 27, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Fundamentals on Rotational Motion 2.Rotational Kinematics 3.Relationship between angular.
PHYS 1443 – Section 001 Lecture #16 Monday, April 11, 2011 Dr. Jaehoon Yu Collisions – Elastic and Inelastic Collisions Collisions in two dimension Center.
Monday, Apr. 7, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #19 Monday, Apr. 7, 2008 Dr. Jaehoon Yu Linear Momentum.
Angular Motion, General Notes
Lecture 18 Rotational Motion
Finish Momentum Start Spinning Around
Thursday, Oct. 16, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #16 Thursday, Oct. 16, 2014 Dr. Jaehoon Yu Center of Mass.
Thursday, June 21, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #13 Thursday, June 21, 2007 Dr. Jaehoon Yu Fundamentals.
Wednesday, Oct. 23, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #12 Monday, Oct. 23, 2002 Dr. Jaehoon Yu 1.Rocket Propulsion.
Monday, Nov. 19, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #21 Monday, Nov. 19, 2007 Dr. Jae Yu Work, Power and Energy.
Wednesday, Nov. 7, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #18 Wednesday, Nov. 7, 2007 Dr. Jae Yu Rolling Motion.
Monday, Oct. 27, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #16 Monday, Oct. 27, 2002 Dr. Jaehoon Yu 1.Center of Mass.
Tuesday, July 1, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #15 Tuesday, July 1, 2014 Dr. Jaehoon Yu Concept of the.
Wednesday, Apr. 15, 2009PHYS , Spring 2009 Dr. Jaehoon Yu PHYS 1441 – Section 002 Lecture #19 Wednesday, Apr. 15, 2009 Dr. Jaehoon Yu Relationship.
Wednesday, Mar. 24, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #15 Wednesday, Mar. 24, 2004 Dr. Jaehoon Yu Center.
Spring 2002 Lecture #13 Dr. Jaehoon Yu 1.Rotational Energy 2.Computation of Moments of Inertia 3.Parallel-axis Theorem 4.Torque & Angular Acceleration.
Physics CHAPTER 8 ROTATIONAL MOTION. The Radian  The radian is a unit of angular measure  The radian can be defined as the arc length s along a circle.
Wednesday, Oct. 22, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #15 Wednesday, Oct. 22, 2002 Dr. Jaehoon Yu 1.Impulse.
Monday, Nov. 5, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #17 Monday, Nov. 5, 2007 Dr. Jae Yu Fundamentals of Rotational.
Spring 2002 Lecture #11 Dr. Jaehoon Yu 1.Center of Mass 2.Motion of a System of Particles 3.Angular Displacement, Velocity, and Acceleration 4.Angular.
Thursday, Oct. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #19 Thursday, Oct. 30, 2014 Dr. Jaehoon Yu Rolling Kinetic.
Wednesday, July 2, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #16 Wednesday, July 2, 2014 Dr. Jaehoon Yu Rotational.
Circular Motion and Other Applications of Newton’s Laws
Tuesday, June 26, 2007PHYS , Summer 2006 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #15 Tuesday, June 26, 2007 Dr. Jaehoon Yu Rotational.
Wednesday, June 20, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #12 Wednesday, June 20, 2007 Dr. Jaehoon Yu Impulse.
Wednesday, Oct. 31, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #16 Wednesday, Oct. 31, 2007 Dr. Jae Yu Two Dimensional.
Wednesday, July 7, 2004PHYS , Summer 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 501 Lecture #11 Wednesday, July 7, 2004 Dr. Jaehoon Yu Collisions.
Wednesday, Nov. 10, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Moment of Inertia 2.Parallel Axis Theorem 3.Torque and Angular Acceleration 4.Rotational.
Thursday, June 30, 2011PHYS , Summer 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #15 Thursday, June 30, 2011 Dr. Jaehoon Yu Relationship.
Wednesday, June 29, 2011 PHYS , Summer 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #14 Wednesday, June 29, 2011 Dr. Jaehoon Yu Motion.
Monday, Nov. 4, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #14 Monday, Nov. 4, 2002 Dr. Jaehoon Yu 1.Parallel Axis Theorem.
Wednesday, Oct. 29, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #17 Wednesday, Oct. 29, 2002 Dr. Jaehoon Yu 1.Rolling.
Monday, Nov. 22, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #19 Monday, Nov. 22, 2010 Dr. Jaehoon Yu Equations of Rotational.
Spring 2002 Lecture #12 Dr. Jaehoon Yu 1.Motion of a System of Particles 2.Angular Displacement, Velocity, and Acceleration 3.Angular Kinematics.
PHYS 1441 – Section 501 Lecture #12
PHYS 1443 – Section 001 Lecture #19
PHYS 1443 – Section 001 Lecture #17
PHYS 1441 – Section 001 Lecture #15
PHYS 1443 – Section 002 Lecture #17
PHYS 1443 – Section 003 Lecture #18
PHYS 1443 – Section 001 Lecture #15
PHYS 1443 – Section 003 Lecture #16
PHYS 1443 – Section 003 Lecture #17
PHYS 1441 – Section 002 Lecture #21
PHYS 1443 – Section 003 Lecture #12
PHYS 1443 – Section 001 Lecture #12
PHYS 1443 – Section 001 Lecture #14
PHYS 1441 – Section 002 Lecture #22
PHYS 1443 – Section 003 Lecture #15
PHYS 1443 – Section 003 Lecture #13
PHYS 1443 – Section 002 Lecture #18
PHYS 1443 – Section 003 Lecture #11
PHYS 1441 – Section 002 Lecture #19
PHYS 1443 – Section 003 Lecture #19
PHYS 1443 – Section 003 Lecture #13
PHYS 1443 – Section 501 Lecture #19
PHYS 1443 – Section 003 Lecture #11
PHYS 1441 – Section 002 Lecture #21
PHYS 1443 – Section 002 Lecture #16
PHYS 1441 – Section 002 Lecture #18
PHYS 1441 – Section 501 Lecture #11
PHYS 1443 – Section 001 Lecture #13
PHYS 1443 – Section 003 Lecture #15
PHYS 1443 – Section 003 Lecture #14
PHYS 1441 – Section 001 Lecture # 12
PHYS 1443 – Section 003 Lecture #15
Presentation transcript:

PHYS 1443 – Section 003 Lecture #16 Monday, Oct. 27, 2002 Dr. Jaehoon Yu Center of Mass Motion of a group of particles Rotational Motion Rotational Kinematics Rotational Energy Moment of Inertia Remember the 2nd term exam (ch 6 – 11), Monday, Nov. 3! Monday, Oct. 27, 2003 PHYS 1443-003, Fall 2003 Dr. Jaehoon Yu

Center of Mass We’ve been solving physical problems treating objects as sizeless points with masses, but in realistic situation objects have shapes with masses distributed throughout the body. Center of mass of a system is the average position of the system’s mass and represents the motion of the system as if all the mass is on the point. The total external force exerted on the system of total mass M causes the center of mass to move at an acceleration given by as if all the mass of the system is concentrated on the center of mass. What does above statement tell you concerning forces being exerted on the system? m1 m2 x1 x2 Consider a massless rod with two balls attached at either end. xCM The position of the center of mass of this system is the mass averaged position of the system CM is closer to the heavier object Monday, Oct. 27, 2003 PHYS 1443-003, Fall 2002 Dr. Jaehoon Yu

Center of Mass of a Rigid Object The formula for CM can be expanded to Rigid Object or a system of many particles The position vector of the center of mass of a many particle system is A rigid body – an object with shape and size with mass spread throughout the body, ordinary objects – can be considered as a group of particles with mass mi densely spread throughout the given shape of the object Dmi ri rCM Monday, Oct. 27, 2003 PHYS 1443-003, Fall 2002 Dr. Jaehoon Yu

Center of Mass and Center of Gravity CM Axis of symmetry The center of mass of any symmetric object lies on an axis of symmetry and on any plane of symmetry, if object’s mass is evenly distributed throughout the body. One can use gravity to locate CM. Hang the object by one point and draw a vertical line following a plum-bob. Hang the object by another point and do the same. The point where the two lines meet is the CM. How do you think you can determine the CM of objects that are not symmetric? Since a rigid object can be considered as collection of small masses, one can see the total gravitational force exerted on the object as Center of Gravity Dmi Dmig The net effect of these small gravitational forces is equivalent to a single force acting on a point (Center of Gravity) with mass M. What does this equation tell you? Monday, Oct. 27, 2003 PHYS 1443-003, Fall 2002 Dr. Jaehoon Yu

Example for Center of Mass A system consists of three particles as shown in the figure. Find the position of the center of mass of this system. Using the formula for CM for each position vector component m1 y=2 (0,2) (0.75,4) rCM m2 x=1 (1,0) m3 x=2 (2,0) One obtains If Monday, Oct. 27, 2003 PHYS 1443-003, Fall 2002 Dr. Jaehoon Yu

Example of Center of Mass; Rigid Body Show that the center of mass of a rod of mass M and length L lies in midway between its ends, assuming the rod has a uniform mass per unit length. The formula for CM of a continuous object is L x dx dm=ldx Since the density of the rod (l) is constant; The mass of a small segment Therefore Find the CM when the density of the rod non-uniform but varies linearly as a function of x, l=a x Monday, Oct. 27, 2003 PHYS 1443-003, Fall 2002 Dr. Jaehoon Yu

Motion of a Group of Particles We’ve learned that the CM of a system can represent the motion of a system. Therefore, for an isolated system of many particles in which the total mass M is preserved, the velocity, total momentum, acceleration of the system are Velocity of the system Total Momentum of the system Acceleration of the system External force exerting on the system What about the internal forces? System’s momentum is conserved. If net external force is 0 Monday, Oct. 27, 2003 PHYS 1443-003, Fall 2002 Dr. Jaehoon Yu

Fundamentals on Rotation Linear motions can be described as the motion of the center of mass with all the mass of the object concentrated on it. Is this still true for rotational motions? No, because different parts of the object have different linear velocities and accelerations. Consider a motion of a rigid body – an object that does not change its shape – rotating about the axis protruding out of the slide. q r P s O The arc length, or sergita, is Therefore the angle, q, is . And the unit of the angle is in radian. One radian is the angle swept by an arc length equal to the radius of the arc. Since the circumference of a circle is 2pr, The relationship between radian and degrees is Monday, Oct. 27, 2003 PHYS 1443-003, Fall 2002 Dr. Jaehoon Yu

Angular Displacement, Velocity, and Acceleration Using what we have learned in the previous slide, how would you define the angular displacement? How about the average angular speed? qi qf And the instantaneous angular speed? By the same token, the average angular acceleration And the instantaneous angular acceleration? When rotating about a fixed axis, every particle on a rigid object rotates through the same angle and has the same angular speed and angular acceleration. Monday, Oct. 27, 2003 PHYS 1443-003, Fall 2002 Dr. Jaehoon Yu

Rotational Kinematics The first type of motion we have learned in linear kinematics was under a constant acceleration. We will learn about the rotational motion under constant angular acceleration, because these are the simplest motions in both cases. Just like the case in linear motion, one can obtain Angular Speed under constant angular acceleration: Angular displacement under constant angular acceleration: One can also obtain Monday, Oct. 27, 2003 PHYS 1443-003, Fall 2002 Dr. Jaehoon Yu

Example for Rotational Kinematics A wheel rotates with a constant angular acceleration of 3.50 rad/s2. If the angular speed of the wheel is 2.00 rad/s at ti=0, a) through what angle does the wheel rotate in 2.00s? Using the angular displacement formula in the previous slide, one gets What is the angular speed at t=2.00s? Using the angular speed and acceleration relationship Find the angle through which the wheel rotates between t=2.00 s and t=3.00 s. Monday, Oct. 27, 2003 PHYS 1443-003, Fall 2002 Dr. Jaehoon Yu

Relationship Between Angular and Linear Quantities What do we know about a rigid object that rotates about a fixed axis of rotation? Every particle (or masslet) in the object moves in a circle centered at the axis of rotation. ri P q O x y When a point rotates, it has both the linear and angular motion components in its motion. What is the linear component of the motion you see? vt The direction of w follows a right-hand rule. Linear velocity along the tangential direction. How do we related this linear component of the motion with angular component? The arc-length is So the tangential speed vt is What does this relationship tell you about the tangential speed of the points in the object and their angular speed?: Although every particle in the object has the same angular speed, its tangential speed differs proportional to its distance from the axis of rotation. Monday, Oct. 27, 2003 PHYS 1443-003, Fall 2002 Dr. Jaehoon Yu The farther away the particle is from the center of rotation, the higher the tangential speed.

How about the Accelerations? How many different linear accelerations do you see in a circular motion and what are they? r P q O x y at Two a ar Tangential, at, and the radial acceleration, ar. Since the tangential speed vt is The magnitude of tangential acceleration at is Although every particle in the object has the same angular acceleration, its tangential acceleration differs proportional to its distance from the axis of rotation. What does this relationship tell you? The radial or centripetal acceleration ar is What does this tell you? The father away the particle from the rotation axis the more radial acceleration it receives. In other words, it receives more centripetal force. Total linear acceleration is Monday, Oct. 27, 2003 PHYS 1443-003, Fall 2002 Dr. Jaehoon Yu

Example for Rotational Motion Audio information on compact discs are transmitted digitally through the readout system consisting of laser and lenses. The digital information on the disc are stored by the pits and flat areas on the track. Since the speed of readout system is constant, it reads out the same number of pits and flats in the same time interval. In other words, the linear speed is the same no matter which track is played. a) Assuming the linear speed is 1.3 m/s, find the angular speed of the disc in revolutions per minute when the inner most (r=23mm) and outer most tracks (r=58mm) are read. Using the relationship between angular and tangential speed b) The maximum playing time of a standard music CD is 74 minutes and 33 seconds. How many revolutions does the disk make during that time? c) What is the total length of the track past through the readout mechanism? d) What is the angular acceleration of the CD over the 4473s time interval, assuming constant a? Monday, Oct. 27, 2003 PHYS 1443-003, Fall 2002 Dr. Jaehoon Yu