MIMO-OFDM Wireless Communications with MATLAB®

Slides:



Advertisements
Similar presentations
7. Channel Models.
Advertisements

MIMO-OFDM Wireless Communications with MATLAB ® Yong Soo Cho | Jaekwon Kim Won Young Yang | Chung G. Kang Chapter 11. Signal Detection for Spatially Multiplexed.
ECE 4730: Lecture #10 1 MRC Parameters  How do we characterize a time-varying MRC?  Statistical analyses must be used  Four Key Characteristics of a.
MIMO-OFDM Wireless Communications with MATLAB ® Yong Soo Cho | Jaekwon Kim Won Young Yang | Chung G. Kang Chapter 7. PAPR Reduction.
MIMO-OFDM Wireless Communications with MATLAB ® Yong Soo Cho | Jaekwon Kim Won Young Yang | Chung G. Kang Chapter 8. Inter-Cell Interference Mitigation.
MIMO-OFDM Wireless Communications with MATLAB ® Yong Soo Cho | Jaekwon Kim Won Young Yang | Chung G. Kang Chapter 13. Multi-User MIMO.
MIMO-OFDM Wireless Communications with MATLAB ® Yong Soo Cho | Jaekwon Kim Won Young Yang | Chung G. Kang Chapter 6. Channel Estimation.
MIMO-OFDM Wireless Communications with MATLAB ® Yong Soo Cho | Jaekwon Kim Won Young Yang | Chung G. Kang Chapter 1. The Wireless Channel : Propagation.
MIMO-OFDM Wireless Communications with MATLAB ® Yong Soo Cho | Jaekwon Kim Won Young Yang | Chung G. Kang Chapter 9. MIMO: Channel Capacity.
MIMO-OFDM Wireless Communications with MATLAB ® Yong Soo Cho | Jaekwon Kim Won Young Yang | Chung G. Kang Chapter 12. Exploiting Channel State Information.
NTU Confidential Baseband Transceiver Design for the DVB-Terrestrial Standard Baseband Transceiver Design for the DVB-Terrestrial Standard Advisor : Tzi-Dar.
Abdul-Aziz .M Al-Yami Khurram Masood
MIMO-OFDM Wireless Communications with MATLAB ® Yong Soo Cho | Jaekwon Kim Won Young Yang | Chung G. Kang Chapter 10. Antenna Diversity and Space- Time.
Adaphed from Rappaport’s Chapter 5
MIMO-OFDM Wireless Communications with MATLAB ® Yong Soo Cho | Jaekwon Kim Won Young Yang | Chung G. Kang Chapter 5. Synchronization for OFDM.
Statistical Description of Multipath Fading
Doc.: IEEE Submission Chanho Yoon (ETRI)Slide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
UWB Channels: Time-Reversal Signaling NEWCOM, Dept. 1 Meeting Paris, 13 May 2005 Erdal Arıkan Bilkent University Ankara, Turkey.
Doc.: IEEE /0568r0 Submission April 2011 Shusaku Shimada 1 Industrial Channels of Usecase 1d/2 Date: Authors:
Doc.: IEEE /0038r1 TG3c Presentation Wooyong Lee – ETRISlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks.
Outline Introduction Wireless channel & model Jakes channel model
NTU Confidential Indoor MIMO WLAN Channel Models Speaker: Chi-Yeh Yu Advisor: Tzi-Dar Chiueh Nov 17, 2003.
Mobile Radio Propagation - Small-Scale Fading and Multipath
Shadowing.
1. Introduction.
Basics of Small Scale Fading: Towards choice of PHY
Channel Model Considerations for P802.11af
doc.: IEEE <doc#>
Estimated delay spread of industrial plant
Beamforming Array Gain to Intended and Unintended Users
Wireless Communications Principles and Practice 2nd Edition T. S
<month year> doc: IEEE a April 2005
2: The Wireless Channel Fundamentals of Wireless Communication, Tse&Viswanath Fundamentals of Wireless Communication David Tse University of California,
Report on Channel Model
On the Suitability of Repetition for ah
Smart Antenna Rashmikanta Dash Regd.no: ETC-A-52
<month year> doc.: IEEE c January, 2006
MIMO-OFDM Wireless Communications with MATLAB®
MIMO-OFDM with antenna selection
Validation of n Channel Models
802.11n Channel Model Validation
July 2003 HTSG - Report of the Channel Models Special Committee Vinko Erceg et al. Vinko Erceg, Zyray Wireless.
Month 2002 doc.: IEEE /xxxr0 Nov 2003
Coherence Time Measurement in NTT Lab.
Wireless Communications Principles and Practice 2nd Edition T. S
September 2003 Indoor WLAN Channel Models Special Committee - Report September 2003 Singapore meeting Vinko Erceg, Zyray Wireless; et al.
HDR a solution using MIMO-OFDM
doc.: IEEE <doc#>
<month year> doc.: IEEE a July 2006
<month year> doc: IEEE a April 2005
Some (Measured) Characteristics of V2V Channels
Topics in MIMO Channel Modeling
Simulation of NGV Channel Models
<month year> doc.: IEEE c January, 2006
Simulation of NGV Channel Models
Industrial Channels of Usecase 1d/2
WNG Presentation: 6-9GHz extensions to
<month year> doc.: IEEE a July 2006
doc.: IEEE <doc#>
doc.: IEEE yy/xxxxr0 Date:
WAVE Channel Modeling and the Midamble Insertion Effects
Optimal Combining of STBC and Spatial Multiplexing for MIMO-OFDM
Beamforming Array Gain to Intended and Unintended Users
Joint Channel Estimation and Prediction for OFDM Systems
Some (Measured) Characteristics of V2V Channels
Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Presentation on Radio Channel Model for Indoor UWB WPAN.
Some (Measured) Characteristics of V2V Channels
doc.: IEEE <doc#>
doc.: IEEE <doc#>
<month year> IEEE Jan
Presentation transcript:

MIMO-OFDM Wireless Communications with MATLAB® Chapter 2. SISO Channel Models Yong Soo Cho | Jaekwon Kim Won Young Yang | Chung G. Kang 1

Chapter 2. SISO Channel Models 2.1 INDOOR CHANNEL MODELS - 2.1.1 General Indoor Channel Model - 2.1.2 IEEE 802.11 Channel Model - 2.1.3 Saleh-Velenzuela (S-V) Channel Model - 2.1.4 UWB Channel Model 2.2 OUTDOOR CHANNEL MODELS - 2.2.1 FWGN Model - 2.2.2 Jakes Model - 2.2.3 Ray-Based Channel Model - 2.2.4 Frequency-Selective Fading Channel Model - 2.2.5 SUI Channel Model

2.1 Indoor Channel Models 2.1.1 General Indoor Channel Models

2.1.1 General Indoor Channel Models

2.1.2 IEEE 802.11 Channel Model

2.1.2 IEEE 802.11 Channel Model

2.1.3 Saleh-Valenzuela(S-V) Channel Model

2.1.3 Saleh-Valenzuela(S-V) Channel Model

2.1.3 Saleh-Valenzuela(S-V) Channel Model

2.1.4 UWB Channel Model

Target Channel Characteristics Model Characteristics 2.1.4 UWB Channel Model Target Channel Characteristics CM 1 CM 2 CM 3 CM 4 Mean excess delay (nsec) ( ) 5.05 10.38 14.18 RMS delay (nsec) ( ) 5.28 8.03 14.28 25 NP10dB 35 NP (85%) 24 36.1 61.54 Model Parameters  (1/nsec) 0.0233 0.4 0.0667  (1/nsec) 2.5 0.5 2.1  7.1 5.5 14.00 24.00  4.3 6.7 7.9 12 (dB) 3.3941 3 Model Characteristics 5.0 9.9 15.9 30.1 5 8 15 12.5 15.3 24.9 41.2 20.8 33.9 64.7 123.3 Channel energy mean (dB) -0.4 -0.5 0.0 0.3 Channel energy std (dB) 2.9 3.1 2.7

2.1.4 UWB Channel Model

2.1.4 UWB Channel Model

2.1.4 UWB Channel Model

2.2 Outdoor Channel Models 2.2.1.1 Clarke/Gans Model

2.2.1.1 Clarke/Gans Model

2.2.1.1 Clarke/Gans Model

2.2.1.2 Modified Frequency-Domain FWGN Model

2.2.1.2 Modified Frequency-Domain FWGN Model

2.2.1.2 Modified Frequency-Domain FWGN Model

2.2.1.2 Modified Frequency-Domain FWGN Model

2.2.1.3 Time-Domain FWGN Model

2.2.2 Jakes Model

2.2.2 Jakes Model

2.2.2 Jakes Model

2.2.2 Jakes Model

2.2.2 Jakes Model

2.2.2 Jakes Model

2.2.3 Ray-Based Channel Model

2.2.3 Ray-Based Channel Model

2.2.3 Ray-Based Channel Model

2.2.3.1 Uniform Power Subray Method

2.2.3.1 Uniform Power Subray Method

2.2.3.1 Uniform Power Subray Method

2.2.3.1 Uniform Power Subray Method

2.2.3.2 Sampled Laplacian Method

2.2.4 Frequency-Selective Fading Channel Model Tab Pedestrian A Pedestrian B Vehicular A Vehicular B Doppler Spectrum Relative delay [ns] Average Power [dB] 1 0.0 0. -2.5 Classic 2 110 -9.7 200 -0.9 310 -1.0 300 3 190 -19.2 800 -4.9 710 -9.0 8900 -12.8 4 410 -22.8 1200 -8.0 1090 -10.0 12900 5 2300 -7.8 1730 -15.0 17100 -25.2 6 3700 -23.9 2510 -20.0 20000 -16.0

2.2.4 Frequency-Selective Fading Channel Model Tab Typical Urban (TU) Bad Urban (BU) Relative delay [us] Average Power Doppler Spectrum 1 0.0 0.189 Classic 0.164 2 0.2 0.379 0.3 0.293 3 0.5 0.239 1.0 0.147 GAUS1 4 1.6 0.095 0.094 5 2.3 0.061 GAUS2 5.0 0.185 6 0.037 6.6 0.117

2.2.4 Frequency-Selective Fading Channel Model Tab Typical Urban (TU) Bad Urban (BU) Relative delay [us] Average Power Doppler Spectrum 1 0.0 0.092 Classic 0.033 2 0.1 0.115 0.089 3 0.3 0.231 0.141 4 0.5 0.127 0.7 0.194 GAUS1 5 0.8 1.6 0.114 6 1.1 0.074 2.2 0.052 GAUS2 7 1.3 0.046 3.1 0.035 8 1.7 5.0 0.140 9 2.3 0.051 6.0 0.136 10 0.032 7.2 0.041 11 3.2 0.018 8.1 0.019 12 0.025 10.0 0.006

2.2.4 Frequency-Selective Fading Channel Model Tab Typical Rural Area (RA) Relative delay [us] Average Power Doppler Spectrum 1 0.0 0.602 RICE 2 0.1 0.241 Classic 3 0.2 0.096 4 0.3 0.036 5 0.4 0.018 6 0.5 0.006

2.2.4.1 Tapped Delay Line (TDL) Model

2.2.4.2 Tap Adjustment

2.2.4.2 Tap Adjustment

2.2.5. SUI Channel Model Terrain Type SUI Channels A SUI-5, SUI-6 B

2.2.5. SUI Channel Model

2.2.5. SUI Channel Model SUI 1/2/3/4/5/6 Channel Tap 1 Tap 2 Tap 3 Delay 0/0/0/0/0/0 0.4/0.4/0.4/1.5/4/14 0.9/1.1/0.9/4/10/20 Power (omni ant.) [dB] 90% K-factor (omni) 75% K-factor (omni) 50% K-fact. (omni) 4/2/1/0/0/0 /1/0/0 -/-/-/-/2/1 -15/-12/-5/-4/-5/-10 -/-/-/-/0/0 -20/-15/-10/-8/-10/-14 Power (30° ant.) [dB] 90% K-factor (30° ant.) 75% K-factor (30° ant.) 50% K-factor (30° ant.) 72/36/19/5/2 -/-/-/-/7/5 -21/-18/-11/-10/-11/-16 -32/ -27/ -22/ -20/ -22/-26 Doppler [Hz] 0.4/0.2/0.4/0.2/2/0.4 0.3/0.15/0.3/0.15/1.5/0.3 0.5/0.25/0.5/0.25/2.5/0.5 Antenna Correlation Gain Reduction Factor Normalization Factor Terrain Type C/C/B/B/A/A Omni antenna: Overall K K=3.3/16/0.5/0.2/0.1/0.1(90%) K=10.4/5.1/1.6/0.6/0.3/0.3 (75%), K=-/-/-/-/1.0/1.0 (50%) 30° antenna: Overall K : K=14.0/6.9/2.2/1.0/0.4/0.4 (90%), K=44.2/21.8/7.0/3.2/1.3/1.3 (75%), K=-/-/-/-/4.2/4.2 (50%)

2.2.5. SUI Channel Model

2.2.5. SUI Channel Model

2.2.5. SUI Channel Model

2.2.5. SUI Channel Model