CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF

Slides:



Advertisements
Similar presentations
MICROWAVE SPECTRUM AND AB INITIO CALCULATIONS OF meta-CHLOROBENZALDEHYDE Sean Arnold, Jessica Garrett, & Dr. Gordon Brown Department of Science and Mathematics.
Advertisements

FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL ACETYLIDES P. M. SHERIDAN, M. K. L. BINNS Department of Chemistry and Biochemistry, Canisius College.
AUSTIN L. MCJUNKINS, K. MICHELLE THOMAS, APRIL RUTHVEN, AND GORDON G. BROWN Department of Science and Mathematics, Coker College, 300 E College Ave., Hartsville,
Jason J. Pajski, Matt Logan, Brian C. Dian 1, Gordon G. Brown, Kevin O. Douglass, Richard D. Suenram and Brooks H. Pate Department of Chemistry, University.
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
Measurement of the Vibrational Population Distribution of Barium Sulfide, Seeded in an Argon Supersonic Expansion, Following Production Through the Reaction.
Morgan McCabe and Steven Shipman New College of Florida
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Waveguide Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrum of Allyl Chloride Erin B. Kent, Morgan N. McCabe, Maria A. Phillips, Brittany P.
THE CONFORMATIONAL BEHAVIOUR OF GLUCOSAMINE I. PEÑA, L. KOLESNIKOVÁ, C. CABEZAS, C. BERMÚDEZ, M. BERDAKIN, A. SIMAO, J.L. ALONSO Grupo de Espectroscopia.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Galen Sedo, Jane Curtis, Kenneth R. Leopold Department of Chemistry, University of Minnesota The Dipole Moment of the Sulfuric Acid Monomer.
OSU 06/19/08 Ultrabroadband Rotational Spectroscopy: Novel Applications of a Shape Sensitive Detector BRIAN C. DIAN Purdue University Department of Chemistry.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
OSU 06/18/08 Ultrabroadband Rotational Spectroscopy: Novel Applications of a Shape Sensitive Detector BRIAN C. DIAN Purdue University Department of Chemistry.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
Galen Sedo, Jamie Doran, Jane Curtis, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Study of the HNO 3 -(H 2 O) 3 Tetramer.
OSU – June STEPHEN KUKOLICH, Chemistry Dept., University of Arizona, MICHAEL PALMER School of Chemistry, University of Edinburgh, PETER GRONER,
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Bri Gordon Steven T. Shipman New College of Florida
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Structures and Internal Dynamics of H 2 S  ICF 3 and H 2 O  ICF 3 Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium.
Determination of Torsional Barriers of Itaconic Acid and N-acetylethanolamine using Chirped-pulsed FTMW Spectroscopy. Josiah R. Bailey, Timothy J. McMahon,
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
International Symposium on Molecular Spectroscopy// June 26, 2015
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Formic Sulfuric Anhydride: A new chemical species with possible implications for atmospheric aerosol 1 Rebecca B. Mackenzie, Christopher T. Dewberry, and.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
Microwave Spectra of cis-1,3,5- Hexatriene and Its 13 C Isotopomers; An r s Substitution Structure for the Carbon Backbone Richard D. Suenram, Brooks H.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
SEEING IS BELIEVING: An 11 GHz molecular beam rotational spectrum (7.5 – 18.5 GHz) with 100 kHz resolution in 15  s measurement time Brian C. Dian, Kevin.
Rotational Spectra of N 2 O-H 2 Complexes University of Alberta Jen Nicole Landry and Wolfgang Jäger June 23, 2005.
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
Nathan Seifert, Wolfgang Jäger University of Alberta
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Max Planck Institute for the Structure and Dynamics of Matter
MEASURING CONFORMATIONAL ENERGY DIFFERENCES USING PULSED-JET MICROWAVE SPECTROSCOPY CAMERON M FUNDERBURK, SYDNEY A GASTER, TIFFANY R TAYLOR, GORDON G BROWN.
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
Department of Chemistry
Structure and tunneling dynamics of gauche-1,3-butadiene
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
STEPHEN G. KUKOLICH, MING SUN, ADAM M. DALY University of Arizona
Characterisation and Control of Cold Chiral Compounds
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
The CP-FTMW Spectrum of Verbenone
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) INVESTIGATIONS INTO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE; A MOLECULE OF ATMOSPHERIC.
Broadband Microwave Spectrum & Structure of Cyclopropyl Cyanosilane
Department of Chemistry
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
Microwave spectra of 1- and 2-bromobutane
THE STRUCTURE OF PHENYLGLYCINOL
Methylindoles – Microwave Spectroscopy
AN INVESTIGATION OF THE DIPOLE FORBIDDEN TRANSITION EFFECTS IN BROMOFLUOROCARBONS AS IT PERTAINS TO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE USING CP-FTMW.
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Michal M. Serafin, Sean A. Peebles
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF RE12 CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF 2-CHLORO-3-FLUOROPYRIDINE AND 2-CHLORO-6-FLUOROPYRIDINE Sean Arnold, J. Chase Chewning & Gordon Brown Department of Science and Mathematics, Coker College, Hartsville, SC, 29550 USA

Purpose: Measure and assign the rotational spectra of 2-Cl-3-F-Pyridine and 2-Cl-6-F-Pyridine Instrumentation test: Is our chirped-pulse spectrometer capable of dealing with two nuclear quadrupoles? 2-chloro-3-fluoropyridine 2-chloro-6-fluoropyridine

Spectrometer Diagram 240 MHz

250 MHz Chirped Pulse:

Chirped-Pulse Microwave Spectrometer

CP-FTMW Resolution Low-Res 20 μs FID Peak Width ~130 kHz (FWHM) Doppler Splitting ~ 70. kHz Hi-Res

Experimental: 2-Cl-3-F-Pyridine Frequency (MHz) 10,000 signal averages (approximately 40 hours of measurement time) 100 μs FID 50 psi backing pressure (He/Ne mix) Sample evaporated at room temperature

Experimental 2-Cl-6-F-Pyridine Frequency (MHz) 10,000 signal averages (approximately 40 hours of measurement time) 100 μs FID 50 psi backing pressure (He/Ne mix) Sample heated in nozzle to ~80° C

2-Cl-3-F-Pyridine Assignments

2-Cl-3-F-Pyridine Assignments

2-Cl-6-F-Pyridine Assignments

Rotational Parameters for 2-chloro-3-fluoropyridine 2-chloro-3-fluoropyridine (35Cl) 2-chloro-3-fluoropyridine (37Cl)   B3LYP/ 6‑311++g(d,p) Experimental A (MHz) 2936.0358 2949.4216 (38) 2920.3469 2940.894 (13) B (MHz) 1595.7478 1612.22964 (87) 1563.4143 1570.9766 (12) C (MHz) 1033.8474 1042.2833 (11) 1018.2773 1023.8501 (17) DJ (kHz) 0.049 0.035 (13) 0.048 0.038 (16) 3/2 Χaa N(MHz) 0.745 0.554 (66) 0.62474 0.45 (12) ¼ Χbb – Χcc N(MHz) -1.680 -1.631 (19) -1.6595 -1.621 (41) 3/2 Χaa Cl(MHz) -102.333 -107.400 (58) -81.022 -84.98 (21) ¼ Χbb – Χcc Cl(MHz) 2.805 2.276 (18) 2.2729 1.924 (78) Number of Assigned Lines N/A 317 155 OMC (MHz) 0.0090 0.0235 Δ (amu*A2) -0.0000025 0.062 -0.000016 -1.11

Rotational Parameters for 2-chloro-6-fluoropyridine 2-chloro-6-fluoropyridine (35Cl) 2-chloro-6-fluoropyridine (37Cl)   B3LYP/ 6‑311++g(d,p) Experimental A (MHz) 3412.8187 3420.8161 (15) 3403.8890 3411.8877 (21) B (MHz) 1245.8076 1258.4740 (17) 1211.4569 1223.9568 (17) C (MHz) 912.6544 919.9140 (13) 893.46823 900.71002 (61) DJ (kHz) 0.0371 0.027 (19) - 3/2 Χaa N (MHz) 2.73374 2.166 (99) 2.70 2.51 (13) ¼ (Χbb – Χcc) N (MHz) -1.70307 -1.608 (17) -1.697 -1.590 (21) Χab N (MHz) -1.56 -1.45 (85) 3/2 Χaa Cl(MHz) -86.401 -89.90 (12) -68.724201 -71.33 (18) ¼ Χbb – Χcc Cl(MHz) -0.13151 -0.560 (19) -0.00125 -0.327 (26) Χab Cl (MHz) -33.48 -34.23 (49) -25.8 -26.8 (20) Number of Assigned Lines N/A 153 111 OMC (MHz) 0.00814 0.0217 Δ (amu*A2) -0.000041 0.0592 -0.000016 0.0607

Conclusions: Measured 8-18.5 GHz spectra of the two molecules Determined experimental rotational and quadrupole coupling constants Successfully measured and analyzed compounds with two nuclear quadrupoles 2-chloro-3-fluoropyridine 2-chloro-6-fluoropyridine

Acknowledgements National Science Foundation (CHE-1213560) American Chemical Society-Petroleum Research Fund (PRF #50746-UN16) South Carolina EPSCoR/IDeA GEAR:RE Program Coker College Sean Arnold Chase Chewning