Department of Chemistry

Slides:



Advertisements
Similar presentations
CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
Advertisements

Infrared spectra of OCS-C 6 H 6, OCS-C 6 H 6 -He and OCS-C 6 H 6 -Ne van der Waals Complexes M. Dehghany, J. Norooz Oliaee, Mahin Afshari, N. Moazzen-Ahmadi.
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Structures and Internal Dynamics of H 2 S  ICF 3 and H 2 O  ICF 3 Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium.
Structure Determination of Two Stereoisomers of Sevoflurane Dimer by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin.
OSU-05 TA 101 The Structure of Ethynylferrocene using Microwave Spectroscopy. Ranga Subramanian, Chandana Karunatilaka, Kristen Keck and Stephen Kukolich.
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
S TRUCTURE D ETERMINATION AND CH···F I NTERACTIONS IN H 2 C=CHF···H 2 C=CF 2 B Y F OURIER - T RANSFORM M ICROWAVE S PECTROSCOPY Rachel E. Dorris, Rebecca.
Rotational Spectroscopic Investigations Of CH 4 ---H 2 S Complex Aiswarya Lakshmi P. and E. Arunan Inorganic and Physical Chemistry Indian Institute of.
1 -RJ16- NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS 69 th Symposium, Urbana-Champaign, June 16-20, 2012 Dipartimento di Chimica.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
Nicholas R. Walker, David Hird, Anthony C. Legon 1 68 th International Symposium on Molecular Spectroscopy, Ohio State University, Broadband Rotational.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
Department of Chemistry *Department of Chemistry, Mt. Holyoke College,
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
Department of Chemistry
Structure and tunneling dynamics of gauche-1,3-butadiene
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
STEPHEN G. KUKOLICH, MING SUN, ADAM M. DALY University of Arizona
Characterisation and Control of Cold Chiral Compounds
Microwave Spectra and Structures of H4C2CuCl and H4C2AgCl
1Kanagawa Institute of Technology 3Georgia Southern University
Carlos Cabezas and Yasuki Endo
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
The CP-FTMW Spectrum of Bromoperfluoroacetone
Aimee Bell, Omar Mahassneh, James Singer,
Chirped pulse rotational spectroscopy
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
Daniel Zaleski,a John Mullaney,a Nicholas Walkera and Anthony Legonb
FT Microwave and MMW Spectroscopy of the H2-DCN Molecular Complex
Becca Mackenzie Chris Dewberry, Ken Leopold
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Microwave spectra of 1- and 2-bromobutane
Mahdi Kamaee and Jennifer van Wijngaarden
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
The rotational spectrum of the urea isocyanic acid complex
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Michal M. Serafin, Sean A. Peebles
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

Department of Chemistry Taking the next step with halogenated olefins: Microwave spectroscopy and molecular structures of tetrafluoro- and chloro-trifluoro propenes and their complexes with the argon atom Mark D. Marshall, Helen O. Leung, Miles Wronkovich, Megan Tracy, Laboni Hoque, Allison Randy-Cofie, and Alina Dao Department of Chemistry Amherst College Supported by the National Science Foundation

Intermolecular interactions: fluoroethylenes-protic acids 2.441(4) Å 3.159 Å 122.6(4)o 36.4(2)o Cole & Legon, Chem. Phys. Lett. 369, 31 (2003). 2.123(1) Å 3.162 Å 123.7(1)o 18.3(1)o Kisiel, Fowler & Legon, J. Chem. Phys. 93, 3054 (1990). 1.89(1) Å 2.734 Å 121.4o 19(2)o Cole & Legon, Chem. Phys. Lett. 400, 419 (2004). The vinyl fluorideHX complexes are planar and adopt the same structural motif. There are two interactions: a H-bond donated by HX, and a secondary interaction between the nucleophilic portion of HX and an H atom cis to F. As the acid strength decreases, the H bond becomes longer and less linear. The CF---H angle for each complex indicates that the electron density of F that interacts with the acid is ~120o from the CF bond.

Significant differences for chloroethylenes 2.319(6) Å 2.59(1) Å 19.8(3)o 102.4(2)o vinyl chlorideHF 58.5(5)o 88.7(2)o 3.01(1) Å 2.939(4) Å vinyl chlorideHCCH 100.0(8)o 39(2)o 2.6810(2) Å vinyl chlorideHCl Unlike vinyl fluorideHX, the manner of binding for vinyl chlorideHX depends on the identity of the acid partner. The "top" binding configuration of the HF complex is less strained than a "side" binding structure. The "side" binding configuration of the HCCH complex allows it to interact with the most electropositive H atom in vinyl chloride. The nonplanar HCl complex is likely a result of dispersion interactions that arise between Cl in HCl and the electron density in vinyl chloride.

Chlorofluoroethylene-HCCH complexes Same binding mode as vinyl fluoride-HCCH HCCH prefers to bind to F Same binding mode as vinyl chloride-HCCH HCCH prefers to bind to Cl First complex observed where an acid binds to Cl, instead of F, in a substituted ethylene

Extend to halopropenes by substituting –CF3 group Vinyl fluoride 2,3,3,3-tetrafluoropropene

Extend to halopropenes by substituting –CF3 group Vinyl chloride 2-chloro-3,3,3-trifluoropropene

Extend to halopropenes by substituting –CF3 group Vinyl chloride (Z)-1-chloro-3,3,3-trifluoropropene

Extend to halopropenes by substituting –CF3 group Vinyl chloride (E)-1-chloro-3,3,3-trifluoropropene

First step: Characterize monomer spectra and structures

Experimental methods Chirped pulse Fourier transform microwave spectrometer: 5.6- 18.1 GHz Less abundant isotopologues studied as necessary in Balle- Flygare instrument 1% halopropene in argon is expanded through two pulsed valves with 0.8 mm nozzle Spectra obtained as 4 GHz portions, 20 W power, 4 s chirp Ten 10-s FIDs per gas pulse >400,000 FIDs averaged 200 kHz FWHM Spectra analyzed using Kisiel’s AABS package in conjunction with Pickett’s SPFIT/SPCAT 2,3,3,3-tetrafluoropropene monomer used original Amherst CP-FTMW and somewhat different conditions Photo courtesy of Jessica Mueller, Amherst College

2,3,3,3-tetrafluropropene Marshall, Leung, Scheetz, Thaler, and Muenter, JMS, 266, 37 (2011) CF3CFCH2 CF3CF13CH2 CF313CFCH2 13CF3CFCH2 A / MHz 3714.71903(50) 3671.5011(17) 3714.1339(15) 3714.9825(12) B / MHz 2465.51465(39) 2432.99032(97) 2454.73533(91) 2462.24116(65) C / MHz 2001.09445(38) 1967.24810(93) 1993.82750(97) 1998.93819(69) J / 10-3 MHz 0.2570(86) 0.302(29) 0.249(33) 0.341(23) JK / 10-3 MHz 1.0862(37) 1.341(77) 1.04(10) 0.988(82) K / 10-3 MHz 0.8494(89) 0.8494a J / 10-3 MHz 0.05784(42) 0.05784a K / 10-3 MHz 2.5308(36) 2.5308a Highest J 12 5 4 Highest Ka 6 3 rms / kHz 7.44 7.37 5.23 Tune-up molecule for original Amherst CP- FTMW spectrometer Two 6 GHz portions 5 W power 50,000 FIDs Helium carrier gas Four isotopologues Ab initio anharmonic α’s used to get semi-experimental re structure aFixed at the value appropriate to the most abundant isotopologue.

2,3,3,3-tetrafluropropene – r0 structure C1C2 / Å 1.3215a C2C3 / Å 1.5029b C1H1 / Å 1.0766c C1H2 / Å 1.0747c C2F1 / Å 1.34655(55) C3F2 / Å 1.335659(62)d C3F3 / Å 1.338309(62)d C3F4 / Å H1C1C2 / o 120.140c H2C1C2 / o 119.396c F1C2C1 / o 122.770c C3C2C1 / o 126.84(13) F2C3C2 / o 111.858(22) F3C3C2 / o 110.865c F4C3C2 / o F3C3C2C1 / o 120.366c F4C3C2C1 / o 120.366c No evidence of internal rotation of –CF3 group Leung, Marshall, Wronkovich, JMS, Caminati Issue, Part 2. aFixed to the bond length determined by the Kraitchman analysis bCalculated from the Kraitchman coordinates by assuming that C3 lies on the a axis cFixed to ab initio value. dThe C3–F3 and C3–F4 bonds are assumed to have the same length, which in turn is fixed to be 0.00265 Å longer than that for C3–F2, as suggested by ab initio results.

2-chloro-3,3,3-trifluoropropene Rich a/b-type spectrum 35Cl/ 37Cl isotopologues Cl nuclear quadupole coupling hyperfine All provide additional structural information

2-chloro-3,3,3-trifluoropropene broadband spectra (MHz) CF3C35ClCH2 CF3C37ClCH2 CF3C35Cl13CH2 CF313C35ClCH2 13CF3C35ClCH2 A 3277.25411(17) 3270.12821(24) 3199.0917(11) 3269.22049(70) 3277.2343(10) B 1787.057850(98) 1744.34607(13) 1784.67573(59) 1785.56343(66) 1783.04378(55) C 1450.057320(81) 1420.45421(13) 1432.98444(42) 1447.50377(58) 1447.36683(83) ΔJ/10-3 0.1748(11) 0.1681(25) 0.1468(69) 0.139(12) 0.1750(90) ΔJK/10-3 0.6728(34) 0.6600(56) 0.668(28) 0.865(47) 0.586(31) ΔK/10-3 -0.4641(46) -0.420(11) -0.31(10) -0.729(66) -0.304(57) δJ/10-3 0.04140(28) 0.03920(46) 0.0404(36) 0.0306(42) 0.0572(49) δK/10-3 -1.3599(28) -1.310(10) -1.352(43) -1.695(85) -1.287(96) χaa (Cl) -34.0275(33) -27.8185(35) -32.995(15) -33.745(15) -33.953(22) χbb (Cl) -0.5169(34) 0.5818(39) -1.571(12) -0.808(13) -0.617(17) χcc (Cl) 34.5443(31) 27.2366(33) 34.566(13) 34.553(13) 34.570(14) |χab|(Cl) 54.88(36) 42.70(59) 53.07(85) 55.5(17) 51.5(24) rms/kHz 4.28 3.38 7.04 6.28 7.13 J range 1-12 1-10 2-7 2-10 Ka range 0-6 0-5 0-4 Pcc / u Å2 44.24

2-chloro-3,3,3-trifluoropropene narrowband spectra (MHz) CF3C35Cl13CH2 CF313C35ClCH2 13CF3C35ClCH2 CF3C37Cl13CH2 CF313C37ClCH2 13CF3C37ClCH2 A 3199.09082(34) 3269.22153(30) 3277.23677(26) 3191.22630(41) 3261.81420(32) 3270.09620(70) B 1784.67776(16) 1785.56467(27) 1783.04318(30) 1742.44599(36) 1743.13800(19) 1740.25450(40) C 1432.98532(13) 1447.50331(21) 1447.36834(22) 1404.09990(19) 1418.08484(12) 1417.69521(30) ΔJ/10-3 0.1684(21) 0.1683(37) 0.1844(40) 0.1600(51) 0.1720(33) 0.1710(59) ΔJK/10-3 0.6600(85) 0.708(16) 0.640(12) 0.669(21) 0.650(18) 0.671(31) ΔK/10-3 -0.383(33) -0.490(27) -0.442(12) -0.4431(26) -0.420* -0.460(40) δJ/10-3 0.0438(11) 0.0390(18) 0.0453(21) 0.0387(26) 0.0411(13) 0.0407(24) δK/10-3 -1.375(14) -1.441(35) -1.295(35) -1.520(46) -1.340(44) -1.41(10) χaa (Cl) -32.9887(43) -33.7640(67) -33.9487(66) -27.0833(59) -27.633(10) -27.745(14) χbb (Cl) -1.5675(37) -0.7998(59) -0.6141(51) -0.1197(47) -0.3967(38) -0.5243(65) χcc (Cl) 34.5561(37) 34.5638(61) 34.5627(50) 27.2031(58) 27.2367(82) 27.220(67) |χab|(Cl) 54.91(24) 53.40(82) 52.10(82) 47.84(39) 43.80(89) 42.3(25) rms/kHz 2.494 3.017 2.938 2.295 0.822 1.832 J range 1-7 1-9 1-6 Ka range 0-3 0-4 0-5 Pcc / u Å2 44.24

2-chloro-3,3,3-trifluoropropene structure No evidence of internal rotation of –CF3 group Kisiel’s STRFIT used to fit A, B, C of 8 isotopologues to 7 structural parameters Numbers in brackets fixed at ab initio values rms = 0.0056 u Å2 and well-behaved correlations

(Z)-1-chloro-3,3,3-trifluoropropene broadband spectra (MHz) CH35ClCHCF3 CH37ClCHCF3 13CH35ClCHCF3 CH35Cl13CHCF3 CH35ClCH13CF3 A 4387.26876(19) 4379.77648(31) 4339.2362(11) 4333.5127(11) 4387.69044(97) B 1381.692240(71) 1348.985440(96) 1376.14287(83) 1381.71894(69) 1377.78737(51) C 1288.392056(70) 1259.285587(81) 1279.40555(90) 1283.71873(81) 1285.00017(60) ΔJ/10-3 0.28947(44) 0.28055(58) 0.2932(53) 0.2901(49) 0.2839(55) ΔJK/10-3 4.4062(17) 4.2763(20) 4.094(29) 4.307(26) 4.412(19) ΔK/10-3 -3.727(13) -3.639(30) -4.04(14) -3.59(11) -3.85(10) δJ/10-3 0.027007(61) 0.025889(86) 0.0326(28) 0.04451(77) 0.0260(11) δK/10-3 -3.4388(62) -3.355(16) -2.67(36) -2.53(36) -3.29(19) χaa (Cl) 8.7789(27) 6.4971(33) 9.352(13) 8.722(13) 8.767(13) χbb (Cl) -39.1803(26) -30.4613(30) -39.758(10) -39.112(11) -39.151(99) χcc (Cl) 30.4013(25) 20.6309(31) 30.4062(26) 30.390(10) 30.37(11) |χab (Cl)| 51.937(38) 41.30(62) 52.68(60) 51.08(70) 53.15(58) J range 0-17 0-15 0-8 0-11 Ka range 0-6 0-5 0-3 rms / kHz 4.97 5.56 8.40 8.31 7.46 Pcc / u Å2 44.35

(Z)-1-chloro-3,3,3-trifluoropropene structure Determined by fixed C–F bond length and Pcc Kisiel’s STRFIT used to fit A, B, C of 5 isotopologues to 5 structural parameters Numbers in brackets fixed at ab initio values rms = 0.059 u Å2 and well- behaved correlations 112.691(35)° 127.4(20)° 125.7(15)° 1.530(28) Å 1.682(21) Å No evidence of internal rotation of –CF3 group 1.250(53) Å

(E)-1-chloro-3,3,3-trifluoropropene broadband spectra (MHz)   CH35ClCHCF3 CH37ClCHCF3 A 5300.21(72) 5182.3(37) B 947.86424(50) 921.32069(31) C 935.98703(50) 909.86550(31) ΔJ / 10-3 0.0392(28) 0.0708(14) ΔJK / 10-3 1.444(26) 1.161(11) ΔK / 10-3 [ 0.]* δJ / 10-3 [ 0.008584]* 0.0133(30) δK / 10-3 49.97(27) χaa -63.153(15) -49.830(27) χbb 31.695(19) 24.795(40) χcc 31.458(20) 25.035(40) |χab| [ 28.52]* 13.0(12) J range 3 - 9 4 - 9 Ka range 0 - 5 0 - 6 rms / kHz 15.6 16.7 Pcc 44.29 45.31 Only a-type transitions observed μb is very small 13C isotope shifts small Stay tuned for structure… *held fixed at ab initio values

Ar-2,3,3,3-tetrafluropropene (MHz)   Ar−CF3CFCH2 Ar−CF3CF13CH2 Ar−CF313CFCH2 Ar−13CF3CFCH2 A 2253.29710(36) 2211.03062(15) 2244.33464(17) 2252.25754(15) B 821.30283(15) 819.72532(10) 820.95295(10) 819.098576(97) C 762.55543(14) 758.772070(97) 761.213484(92) 760.524305(90) J / 10-3 1.88888(68) 1.85450(57) 1.87285(58) 1.87826(54) JK / 10-3 4.5457(23) 4.6200(40) 4.5638(40) 4.4487(37) K / 10-3 4.8754(97) 4.3075(80) 4.8557(88) 5.0374(77) J / 10-3 0.23365(22) 0.22778(23) 0.23351(23) 0.23210(22) K / 10-3 0.506(13) 0.684(36) 0.543(36) 0.490(35) J range 1 – 16 1 – 11 Ka range 0 – 7 0 – 4 rms / kHz 11.23 1.48 1.55 Spectra obtained on Balle-Flygare FTMW Leung, Marshall, Wronkovich, JMS, Caminati Issue, Part 2.

Ar-2-chloro-3,3,3-trifluoropropene (MHz) 3.88689(89) Å 3.7234(11) Å 3.9736(29) Å 3.5441(18) Å Ar-CF3C35ClCH2 Ar-CF3C37ClCH2 A 1565.99150(20) 1532.1121(13) B 802.37688(13) 802.0235(12) C 685.13253(13) 678.6428(14) ΔJ/10-3 1.5476(10) 1.3414(85) ΔJK/10-3 2.0533(38) 2.146(26) ΔK/10-3 1.3817(39) 1.650* δJ/10-3 0.36214(50) 0.5822* δK/10-3 2.367(10) 1.427* χaa (Cl) 41.138(13) 33.13(14) χbb (Cl) -8.3502(28) -7.785(21) |χab| (Cl) 16.41* 38.7(98) |χac| (Cl) 13.67* 10.51* |χbc| (Cl) 48.36* 38.50(81) rms/kHz 7.64 23.4 Kisiel’s STRFIT used to fit A, B, C of 2 isotopologues to r, θ, φ of Ar. Halopropene fixed at monomer values rms = 0.062 u Å2 and reasonable correlations Ar almost directly above C2, shaded toward Cl EVAL used to calculate 4 closest heavy atom contacts *held fixed at ab initio values

Ar-(Z)-1-chloro-3,3,3-trifluoropropene (MHz) Ar-CH35ClCHCF3 Ar-CH37ClCHCF3 A 1475.61816(36) 1440.72515(53) B 812.24896(18) 811.73231(36) C 611.92385(14) 605.78093(52) ΔJ/10-3 1.5874(13) 1.5780(31) ΔJK/10-3 -2.6951(73) -2.815(14) ΔK/10-3 8.589(11) 8.564(21) δJ/10-3 0.53179(50) 0.54081(95) δK/10-3 1.5081(64) 1.483(12) χaa (Cl) 28.038(12) 22.001(25) χbb (Cl) 9.581(10) 7.196(17) χcc (Cl) -37.6192(86) -29.197(14) |χab|(Cl) -18.2(26) -8.8(71) |χac|(Cl) 24.31(89) 23.4(34) |χbc|(Cl) 46.718(63) 37.0(10) J range 2-14 2-12 Ka range 0-6 rms / kHz 8.726 7.739 3.7622(65) Å 3.9378(22) Å 3.6472(64) Å 3.4630(55) Å Kisiel’s STRFIT used to fit A, B, C of 2 isotopologues to r, θ, φ of Ar. Halopropene fixed at monomer values rms = 0.23 u Å2 and well-behaved correlations Ar nearly directly above C1 EVAL used to calculate 4 closest heavy atom contacts

Summary Microwave spectra are obtained and analyzed for 2,3,3,3- tetrafluoropropene and 3 isomers of chloro-3,3,3-trifluoropropene Monomer structural parameters determined for all but (E)-1-chloro- 3,3,3-trifluoropropene Microwave spectra are obtained and analyzed for argon complexes of all but (E)-1-chloro-3,3,3-trifluoropropene and argon atom located Work on (E)-1-chloro-3,3,3-trifluoropropene is on-going and is being initiated for both isomers of 1,3,3,3-tetrafluoropropene Comparison of structural trends is forthcoming 2,3,3,3-tetrafluoropropene – HCl has been observed and assigned Spectra of other halopropene/HX mixtures (X = F, Cl) have been obtained but spectra of complexes not yet assigned.