Adam Kučera, Tomáš Pitner

Slides:



Advertisements
Similar presentations
Speaker: Kevin Page Sensor Data and Semantic Mashups ESWC 2011 Tutorial 29 th May 2011.
Advertisements

Natural Language Interfaces to Ontologies Danica Damljanović
CH-4 Ontologies, Querying and Data Integration. Introduction to RDF(S) RDF stands for Resource Description Framework. RDF is a standard for describing.
Personalized Navigation in the Semantic Web: An Enhanced Faceted Browser Michal Tvarožek FIIT STU BA.
XML Technology in E-Commerce
Progress Update Semantic Web, Ontology Integration, and Web Query Seminar Department of Computing David George.
Primer Taller en Grid Computing Universidad del Valle, Cali, Colombia January 2007 WS-DAIOnt-RDF(S): RDF(S) Ontology Access Oscar Corcho.
1 Publishing Linked Sensor Data Semantic Sensor Networks Workshop 2010 In conjunction with the 9th International Semantic Web Conference (ISWC 2010), 7-11.
Event dashboard: Capturing user-defined semantics for event detection over real-time sensor data CSIRO LAND AND WATER Jonathan Yu | Research engineer Environmental.
JSI Sensor Middleware. Slide 2 of x Embedded vs. Midleware based Architecture for Sensor Metadata Management Embedded approach assign an IP address to.
CSCI 572 Project Presentation Mohsen Taheriyan Semantic Search on FOAF profiles.
Incremental Materialization of RDF Graph Closures for Stream Reasoning Alexandre Mello Ferreira (PhD student) 22/11/2010.
ReQuest (Validating Semantic Searches) Norman Piedade de Noronha 16 th July, 2004.
Machine Reasoning about Anomalous Sensor Data Matt Calder, Francesco Peri, Bob Morris Center for Coastal Environmental Sensoring Networks CESN University.
DCMO - CIO Architecture Federation Pilot Larry Singer 5 January, 2012.
Audumbar Chormale Advisor: Dr. Anupam Joshi M.S. Thesis Defense
© 2006 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice Publishing data on the Web (with.
Practical RDF Chapter 1. RDF: An Introduction
Semantic Publishing Update Second TUC meeting Munich 22/23 April 2013 Barry Bishop, Ontotext.
SemantAqua: A Semantically-Enabled Provenance-Aware Water Quality Portal Evan W. Patton, Ping Wang, Jin Guang Zheng, Timothy Lebo, Li Ding, Joanne Luciano,
1 SAMT’08 Semantic-driven multimedia retrieval with the MPEG Query Format Ruben Tous and Jaime Delgado Distributed Multimedia Applications Group (DMAG)
Unifying Data and Domain Knowledge Using Virtual Views IBM T.J. Watson Research Center Lipyeow Lim, Haixun Wang, Min Wang, VLDB Summarized.
Digital Enterprise Research Institute HADA – An Access Controlled Application for Publishing and Discovering Linked Government Data Owen Sacco.
Database Support for Semantic Web Masoud Taghinezhad Omran Sharif University of Technology Computer Engineering Department Fall.
1 Foundations V: Infrastructure and Architecture, Middleware Deborah McGuinness TA Weijing Chen Semantic eScience Week 10, November 7, 2011.
A service-oriented middleware for building context-aware services Center for E-Business Technology Seoul National University Seoul, Korea Tao Gu, Hung.
Linked-data and the Internet of Things Payam Barnaghi Centre for Communication Systems Research University of Surrey March 2012.
Ontologies and Lexical Semantic Networks, Their Editing and Browsing Pavel Smrž and Martin Povolný Faculty of Informatics,
© DATAMAT S.p.A. – Giuseppe Avellino, Stefano Beco, Barbara Cantalupo, Andrea Cavallini A Semantic Workflow Authoring Tool for Programming Grids.
Developing “Geo” Ontology Layers for Web Query Faculty of Design & Technology Conference David George, Department of Computing.
SPARQL Query Graph Model (How to improve query evaluation?) Ralf Heese and Olaf Hartig Humboldt-Universität zu Berlin.
MyActivity: A Cloud-Hosted Ontology-Based Framework for Human Activity Querying Amin BakhshandehAbkear Supervisor:
Semantic Web Programming in Python an Introduction Biju B Jaganath G.
Grid Computing & Semantic Web. Grid Computing Proposed with the idea of electric power grid; Aims at integrating large-scale (global scale) computing.
Using Several Ontologies for Describing Audio-Visual Documents: A Case Study in the Medical Domain Sunday 29 th of May, 2005 Antoine Isaac 1 & Raphaël.
D2.5 Proof-of-Concept Evaluation for Modelling Time and Space.
Using Semantic Mapping to Manage Heterogeneity in XLIFF Interoperability by Dave Lewis, Rob Brennan, Alan Meehan, Declan O’Sullivan CNGL Centre for Global.
Enabling complex queries to drug information sources through functional composition Olivier Bodenreider Lister Hill National Center for Biomedical Communications.
The future of the Web: Semantic Web 9/30/2004 Xiangming Mu.
Of 33 lecture 1: introduction. of 33 the semantic web vision today’s web (1) web content – for human consumption (no structural information) people search.
ESIP Semantic Web Products and Services ‘triples’ “tutorial” aka sausage making ESIP SW Cluster, Jan ed.
Aim Ability to automate the detection of financial inconsistency and irregularity Problem Need to create a unified and logically rigorous terminology.
Application Ontology Manager for Hydra IST Ján Hreňo Martin Sarnovský Peter Kostelník TU Košice.
© 2006 University of Kansas An LSID resolver for specimens and a digression into issues raised by the use of GUIDs Steve Perry
1 Class exercise II: Use Case Implementation Deborah McGuinness and Peter Fox CSCI Week 8, October 20, 2008.
THE SEMANTIC WEB By Conrad Williams. Contents  What is the Semantic Web?  Technologies  XML  RDF  OWL  Implementations  Social Networking  Scholarly.
Steven Perry Dave Vieglais. W a s a b i Web Applications for the Semantic Architecture of Biodiversity Informatics Overview WASABI is a framework for.
1 A Medical Information Management System Using the Semantic Web Technology Networked Computing and Advanced INFORMATION MANAGEMENT, NCM '08. Fourth.
Semantic sewer pipe failure detection: Linked data approaches for discovering events Jonathan Yu | Research software engineer Environmental Information.
Semantic Water Quality Portal Jin Guang Zheng and Ping Wang Tetherless World Constellation.
Semantic Web 06 T 0006 YOSHIYUKI Osawa. Problem of current web  limits of search engines Most web pages are only groups of character strings. Most web.
Linked Open Data for European Earth Observation Products Carlo Matteo Scalzo CTO, Epistematica epistematica.
The AstroGrid-D Information Service Stellaris A central grid component to store, manage and transform metadata - and connect to the VO!
Stream Reasoning with Linked Data Open Data Open Day 2013 Sina Samangooei, Nick Gibbins 26 June 2013.
Semantic metadata in the Catalogue Frédéric Houbie.
Session: Towards systematically curating and integrating
User Profiling and Ambient UIs
Components.
Agenda Federated Enterprise Architecture Vision
Adam Kučera, Tomáš Pitner
1st Draft for Defining IoT (1)
Web Ontology Language for Service (OWL-S)
Adam Kučera, Tomáš Pitner
Session 2: Metadata and Catalogues
The state of VOEvent semantics THE US NATIONAL VIRTUAL OBSERVATORY
Semantic Markup for Semantic Web Tools:
Chaitali Gupta, Madhusudhan Govindaraju
Linked Open Data in 10 Minutes Sandro Hawke, W3C
Taxonomy of public services
Taxonomy of public services
Presentation transcript:

Adam Kučera, Tomáš Pitner 23. 3. 2017 PV226: Lasaris seminar Semantic BMS: Framework for Analysis of Building Automation Systems Data Adam Kučera, Tomáš Pitner Middleware založený na sémantice pro analýzu provozu budov v rozsáhlých areálech

23. 3. 2017 PV226: Lasaris seminar Motivation – Use case Goal: Examining building operation performance and efficiency using building automation data Use case: BMS of Masaryk University (40 „intelligent“ buildings, 1700 BACnet devices, 150 000 data points) Source: muni.cz

Motivation – BMS Capabilities 23. 3. 2017 PV226: Lasaris seminar Motivation – BMS Capabilities Source: OFM SUKB MU

Motivation – BMS Capabilities 23. 3. 2017 PV226: Lasaris seminar Motivation – BMS Capabilities Source: OFM SUKB MU

Motivation – Analytical capabilities 23. 3. 2017 PV226: Lasaris seminar Motivation – Analytical capabilities BMS Sensor data High detail Recent data Simple applications CAFM Financial data Low detail Delayed data Complex applications How much does the electricity consumption differ across the campus? How much energy is consumed by air conditioning? What are the average room temperatures?

Problem – Complexity of applications 23. 3. 2017 PV226: Lasaris seminar Problem – Complexity of applications Data access (automation protocols, OLTP) Data selection, grouping & aggregation Analytical methods User interface

Problem – Unsuitable semantics 23. 3. 2017 PV226: Lasaris seminar Problem – Unsuitable semantics Data points identified by network address in BMS Data point properties carry limited semantics Missing relation to the physical world: Location Source device Measuring environment (air, water,…) …

Aims & Methods – New semantics 23. 3. 2017 PV226: Lasaris seminar Aims & Methods – New semantics New approach to analysis of BMS data Network addresses are not used as identifiers Universal model relates BMS and BIM and also adds new information Network address (BMS) Source device (BIM) Device ID Type Location Scope device/location (BIM) Observed property Physical quantity Domain Sensing method Time window Aggregation

Aims & Methods – Query examples 23. 3. 2017 PV226: Lasaris seminar Aims & Methods – Query examples 1. Semantic query Location: Campus Bohunice; Building A11 Grouping: Per floor Measured property: Air temperature Source device: Temperature sensor Data type: History Query output: BMS ID 3. Data query Data points: Semantic result data Aggregate: temporal AVG Period: 09/2014 – 1/2015 Aggregation Window: 1 day 4. Data result N01: { {2014-09-01, 23.8}, {2014-09-02, 24.8}, {2014-09-03, 25.1}, {2014-09-04, 24.7}, … N02: { … } N03: { … } 2. Semantic result N01: {11400.TL5, 11500.TL5, 11600.TL1} N02: {12100.TL5, 12300.TL3, 12400.TL5} N03: {12500.TL1, 12600.TL1, 12800.TL1}

Aims & Methods – Query examples 23. 3. 2017 PV226: Lasaris seminar Aims & Methods – Query examples 1. Semantic query Data type: Input; Output; User defined value Influenced property: Air temperature Scope: Room 231 at building UCB-A11 Query output: {Source device (with Location); BMS ID; Data type; Property} 3. Data query Data points: Semantic result data Aggregate: - (present value) 4. Data result { Pump in UCB-A11-1S05; ON } { TS in UCB-A11-1S05, 76,5 °C } { AC in UCB-A11-1S07, 22 °C } 2. Semantic result { Pump in UCB-A11-1S05, 10200.AO1, Output, Pump mode (on/off) } { Temperature sensor in UCB-A11-1S05, 10200.AI5, Input, Water temperature } { Application controller in UCB-A11-1S07, 10000.AV4, User defined value, Setpoint temperature }

Aims & Methods – Middleware layer 23. 3. 2017 PV226: Lasaris seminar Aims & Methods – Middleware layer Simplification of application development & integration Data access APIs Semantic model OWL queried by SPARQL Semantic API Encapsulates semantic model Domain-specific operators Ready-to-use functions for frequent queries Source: Authors

Aims & Methods – Middleware layer 23. 3. 2017 PV226: Lasaris seminar Aims & Methods – Middleware layer Data access API: Encapsulates BAS protocols And DB schemes Simplification of application development & integration Data access APIs Semantic model OWL queried by SPARQL Semantic API Encapsulates semantic model Domain-specific operators Ready-to-use functions for frequent queries Source: Authors

Aims & Methods – Middleware layer 23. 3. 2017 PV226: Lasaris seminar Aims & Methods – Middleware layer Semantic model: RDF, OWL, triple store, Queried by SPARQL Simplification of application development & integration Data access APIs Semantic model OWL queried by SPARQL Semantic API Encapsulates semantic model Domain-specific operators Ready-to-use functions for frequent queries Source: Authors

Aims & Methods – Middleware layer 23. 3. 2017 PV226: Lasaris seminar Aims & Methods – Middleware layer Semantic API: Encapsulates semantic model – convenience functions & operators Simplification of application development & integration Data access APIs Semantic model OWL queried by SPARQL Semantic API Encapsulates semantic model Domain-specific operators Ready-to-use functions for frequent queries Source: Authors

Aims & Methods – Ontology 23. 3. 2017 PV226: Lasaris seminar Aims & Methods – Ontology New semantics of BMS data can be described by Ontology language OWL –Web Ontology Language (W3C) Designed for Semantic web & Linked Data Based on RDF (Resource Definition Framework) „Subject-Predicate-Object“

Aims & Methods – Ontology 23. 3. 2017 PV226: Lasaris seminar Aims & Methods – Ontology Semantic Sensor Network ontology Uses upper-level ontology (Dolce UltraLite) Stimulus-Sensor-Observation Pattern Adjustments/Extensions to SSN to meet domain specific requirements: Representation of BIM elements BMS Data points Physical quantities (UCUM: http://unitsofmeasure.org/trac/) Sensing methods Device types (adapted from IFC 4)

23. 3. 2017 PV226: Lasaris seminar Results – Ontology Source: Authors

Results – Ontology querying 23. 3. 2017 PV226: Lasaris seminar Results – Ontology querying Semantic query Location: Campus Bohunice; Building A11 Grouping: Per floor Measured property: Air temperature Source device: Temperature sensor Data type: History Query output: BMS ID SELECT ?bmsId ?floorId WHERE { ?trendlog sbms:trends ?dp. ?trendlog sbms:hasBMSId ?bmsId. ?dp sbms:expressesObservation ?o. ?o sbms:observedBy ?source. ?source a ?srcClass. FILTER (?srcClass = sbim:Sensor) ?o sbms:observedProperty ?prop. ?prop sbms:hasPhysicalQuality ?pq. FILTER (?pq = ucum:temperature). ?prop sbms:hasPropertyDomain ?pd. FILTER (?pd = sbms:Air). ?scope sbms:hasProperty ?prop. ?scope sbim:isRoomOf ?floor. ?floor sbim:hasBIMId ?floorId. FILTER STRSTARTS (?floorId,“BHA12"). }

Results – Ontology querying 23. 3. 2017 PV226: Lasaris seminar Results – Ontology querying Semantic query Data type: Input; Output; User defined value Influenced property: Air temperature Scope: Room 231 at building UCB-A11 Query output: {Source device (with Location); BMS ID; Data type; Property} SELECT ?sourceId ?srcRoomId ?bmsId ?dpClass ?prop WHERE { ?dp sbms:hasBMSId ?bmsId. ?dp a ?dpClass. ?dpClass rdfs:subClassOf sbms:DataPoint. FILTER (?dpClass = sbms:Input || ?dpClass = sbms:Output || ?dpClass = sbms:UserDefined). ?dp sbms:influences ?iproperty. ?iproperty sbms:hasPhysicalQuality ?pq. FILTER (?pq = ucum:temperature). ?iproperty sbms:hasPropertyDomain ?pd. FILTER (?pd = sbms:Air). ?scope sbms:hasProperty ?iproperty. ?scope sbim:hasBIMId ?scopeId. FILTER (?scopeId = "BHA12N02031"). ?dp sbms:expressesObservation ?o. ?o sbms:observedBy ?source. ?o sbms:observedProperty ?prop. ?source sbim:hasInstallationInRoom ?srcRoom. ?source sbim:hasBIMId ?sourceId. ?srcRoom sbim:hasBIMId ?srcRoomId. }

Results – Semantic API & Client 23. 3. 2017 PV226: Lasaris seminar Results – Semantic API & Client

Results – Semantic API & Client 23. 3. 2017 PV226: Lasaris seminar Results – Semantic API & Client

Results – End-user Applications 23. 3. 2017 PV226: Lasaris seminar Results – End-user Applications Source: Authors, Petr Zvoníček, FI MU

23. 3. 2017 PV226: Lasaris seminar Summary & Conclusion Area: Building operation analysis using data from automation systems Aims: Provide new semantics to BMS data Simplify development of analytical tools Method: Middleware layer Semantic information – Integrating BMS and BIM Data access Evaluation: Implementation of benchmarks defined in EN 15 221: Facility Management