Scintillas System Dynamics Tutorial

Slides:



Advertisements
Similar presentations
DYNAMIC ELECTRICITY.
Advertisements

Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Kirchoff’s current law Kirchoff’s voltage law 1.METHOD Current law Magnetic energy, electric energy, virtual work. Lagrange equation 2. METHOD Modeling.
Physics Lab 2008-Energy. Linear Work  The act of exerting a force through a distance in the direction of the force (constant)  W = F  x cos   F =
Start Presentation ICSC 2005: Beijing October 25, 2005 Object-oriented Modeling in the Service of Medicine François E. Cellier, ETH Zürich Àngela Nebot,
Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 2 Basic Components and Electric Circuits.
Lumped Modeling with Circuit Elements, Ch. 5, Text Ideal elements represent real physical systems. – Resistor, spring, capacitor, mass, dashpot, inductor…
Slide 1.1 7/15/ :15:18 PM © Foster U:\Class_Presentations\1_Class.PPT Class 1 - Introduction Part 1 - Contact Before Work10 min Part 2 - Review the.
ELECTRICITY & MAGNETISM (Fall 2011) LECTURE # 9 BY MOEEN GHIYAS.
Lecture B Electrical circuits, power supplies and passive circuit elements.
22/12/2014.
Scale physical model Mathematical model Numerical model How to Model Physical Systems
CS 367: Model-Based Reasoning Lecture 13 (02/26/2002) Gautam Biswas.
2 Types Current Alternating Current (AC) Direct Current (DC)
In Engineering --- Designing a Pneumatic Pump Introduction System characterization Model development –Models 1, 2, 3, 4, 5 & 6 Model analysis –Time domain.
Electricity Define electric potential difference Determine the change in potential energy when a charge moves between two points at different.
Lesson#23 Topic: Simple Circuits Objectives: (After this class I will be able to) 1. Explain the difference between wiring light bulbs in series and in.
Bond-Graphs: A Formalism for Modeling Physical Systems Sagar Sen, Graduate Student School of Computer Science H.M. Paynter.
SISO System Input Output SIMO System InputOutputs MISO System Input Output MIMO System InputOutput (a)(b) (c)(d) A general way of classifying the systems.
Work and Power By: Jeffrey Chen and Daniel Lee. What is Work? In physics, mechanical work is a scalar quantity that can be described as the product of.
System Models Mathematical Models Mechanical System Building Blocks Electrical System Building Blocks Fluid System Building Blocks Thermal Systems Building.
Feedback Control Systems (FCS) Dr. Imtiaz Hussain URL :
Power and Power Measurement ENGR 10 – Intro to Engineering College of Engineering San Jose State University (Ping Hsu and Ken Youssefi) 1 Introduction.
Analogous Physical Systems BIOE Creating Mathematical Models Break down system into individual components or processes Need to model process outputs.
Start Presentation October 11, 2012 The Theoretical Underpinnings of the Bond Graph Methodology In this lecture, we shall look more closely at the theoretical.
Phys 2180 Lecture (5) Current and resistance and Direct current circuits.
Start Presentation November 15, 2012 Convective Mass Flows I In this lecture, we shall begin looking at the problem of convective mass flows. Irreversible.
NETWORK ANALYSIS. UNIT – I INTRODUCTION TO ELECTRICAL CIRCUITS: Circuit concept – R-L-C parameters Voltage and current sources Independent and dependent.
Chapter 6 Overview. Maxwell’s Equations In this chapter, we will examine Faraday’s and Ampère’s laws.
Dr. Tamer Samy Gaafar Lec. 3 Mathematical Modeling of Dynamic System.
Automatic Control Theory CSE 322
6. Maxwell’s Equations In Time-Varying Fields
Lumped Modeling with Circuit Elements, Ch. 5, Text Ideal elements represent real physical systems. – Resistor, spring, capacitor, mass, dashpot, inductor…
Review of V, I, and R Voltage is the amount of energy per charge available to move electrons from one point to another in a circuit, measured in volts.
ELECTRICAL MACHINES Electrical Machines.
Electrical circuits, power supplies and passive circuit elements
4th Edition Chapter 10 Electrical Engineering.
Equations, Performance, Electrical Equivalent Circuits
Electrical Engineering and Industrial Electronics
Edexcel IGCSE Physics pages 74 to 81
Modeling Methods of Electric Circuits
Automatic Control Theory CSE 322
CHAPTER 6 MESB System Modeling and Analysis Hydraulic (Fluid) Systems
Automatic Control Theory CSE 322
ELECTRICAL CIRCUITS.
Electrical circuits, power supplies and passive circuit elements
9I Energy and Electricity
Damped Forced Vibrations Analysis Using CAMP-G® and Simulink® Modeled Solutions to Problem (
Mathematical Models of Physical Systems
Port-Hamiltonian Description of Electro-Thermal Field-Circuit models
Lecture 15 Review: Capacitors Related educational materials:
Teacher’s Notes A slide contains teacher’s notes wherever this icon is displayed - To access these notes go to ‘Notes Page View’ (PowerPoint 97) or ‘Normal.
GUJARAT TECHNOLOGICAL UNIVERSITY BIRLA VISHVAKARMA MAHAVIDYALAYA
MODELING OF ELECTRICAL SYSTEMS
6. Maxwell’s Equations In Time-Varying Fields
ELECTRICAL Currents & Energy
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
Lumped Modeling with Circuit Elements, Ch. 5, Text
ELECTRICAL Currents & Energy
The Transfer Function.
ELECTRICAL CIRCUITS WALT - Explain how electrons flow through a circuit S.MORRIS 2006 More free powerpoints at
Scintillas System Dynamics Tutorial
LECTURE #5 System Modeling& Responses
ELECTRICAL CIRCUITS S.MORRIS 2006
Control Systems (CS) Lecture-3 Introduction to Mathematical Modeling &
Equations, Performance, Electrical Equivalent Circuits
ELECTRICAL CIRCUITS.
ELECTRICAL CIRCUITS More free powerpoints at
Lecture 2 Electrical and Electronics Circuits. After you study, and apply ideas in this Lecture, you will: Understand differences among resistance, capacitance,
Presentation transcript:

Scintillas System Dynamics Tutorial Tim Broenink

Planning Introduction Lecture on SysDyn Break Exercises/Practice 11/19/2018

Introduction Why this lecture? Extra instructions, extra practice. Based on test 1 Promote understanding www.scintilla.utwente.nl/docs/cursus/SysDyn 11/19/2018

Student Panel A new (exiting and fun) way Evaluate understanding Promote questions 3-5 people Hopefully different next time. 11/19/2018

On the nature of dynamics Lecture 1 On the nature of dynamics 11/19/2018

Contents Why SysDyn? Energy Units Generalizations Elements Storage Transformations BondGraphs

Why SysDyn Generalization of domain into a universal system. Use Electrical knowledge for other domains. Cross domain interactions. 11/19/2018

Energy Two universal units: Time [s] Energy [J] Power [J/s] Basis for all dynamical systems. 11/19/2018

Energy The basis for all Domains Domain Energy per unit units per Time Electrical Volt [J/C] Ampere [C/s] Tanslation Force [N] Velocity [m/s] Rotation Torque [Nm] Angular Velocity[rad/s] Hydraulic Pessure [N/m2] Volume Flow [m3/s] Note: 1[N] = 1 [J/m] 11/19/2018

Energy The basis for all domain 1 quantity for energy/X Effort 1 quantity for X/time Flow 11/19/2018

Energy The basis for all Domains Domain unit Effort Flow Electrical Charge Volt [J/C] Ampere [C/s] Translation Displacement Force [N] Velocity [m/s] Rotation Angle Torque [Nm] Angular Velocity[rad/s] Hydraulic Volume Pressure [N/m2] Volume Flow [m3/s] Note: 1[N] = 1 [J/m] 11/19/2018

Question Can you answer this Explain why Voltage and Force are analogs in dynamic systems. Sort the following quantities into efforts and flows: Velocity, Torque, Pressure, Current, Force, Voltage 11/19/2018

Elements What to do with all that power Elements refer to Ideal Physical Models (IPM). A single relation between effort and flow. A single physical component. Modelled using multiple IPM. 11/19/2018

Elements Different groups 1-port Sources Dissipative Storage 2-port Transformation 11/19/2018

Elements Sources Can Source or Sink infinite power Hard to create in real life. Model approximation. Two options Effort Flow 11/19/2018

Elements Effort Sources Constant Variable Electrical Rotation Translation Hydraulics 𝑉 𝐼 𝑇 𝜔 𝐹 𝑣 𝑝 𝜙 11/19/2018

Elements Flow Sources Constant Variable Electrical Rotation Translation Hydraulics 𝐼 𝑉 𝜔 𝑇 𝑣 𝐹 𝜙 𝑝 11/19/2018

Elements Dissipative Power goes in, power is gone. (heat) Linear case: 𝐸𝑓𝑓𝑜𝑟𝑡=𝛼∗𝐹𝑙𝑜𝑤 𝑃𝑜𝑤𝑒𝑟= 𝐸𝑓𝑓𝑜𝑟 𝑡 2 𝑎 , 𝑃𝑜𝑤𝑒𝑟=𝐹𝑙𝑜 𝑤 2 ∗𝑎 A Resistance. 11/19/2018

Elements Resistance Equation Electrical 𝑉=𝑅∗𝐼 Rotation Translation Hydraulics 𝑉=𝑅∗𝐼 T=𝑅∗𝜔 𝐹=𝑅∗𝑣 p=𝑅∗ϕ 11/19/2018

Question Can you answer this What Electrical resistance needs to be connected to a voltage source, for the source to supply infinite power? And for a current source? Does the previous case also hold for the Hydraulic domain? And for Mechanical rotation and translation? 11/19/2018

Elements Storage Storage of energy into an internal state Intergrate over time [J/s] -> [J] Required for dynamic behaviour. Store two things Effort Flow 11/19/2018

Elements Storage Power goes in, Power comes out later. Intergrate quantity into state State results in other variable. For example: 𝑞= 𝐼 𝑑𝑡 , 𝑉=𝑞/𝐶 Total energy = 𝑃 𝑑𝑡 = 𝑉∗𝐼 𝑑𝑡 = 1 2 𝑞 2 𝐶 11/19/2018

Elements Storage- Different types Store either Effort -> p-type Generalized momentum Flow -> q-type Generalized displacement Same behaviour, different equations 11/19/2018

Elements Storage – Q-type Stored quantity State Output 𝐼 𝑖𝑛𝑡𝑜 𝑐ℎ𝑎𝑟𝑔𝑒 [𝑞] 𝑉= 𝑞 𝐶 Electrical Rotation Translation Hydraulics 𝑇= 𝜃 𝐶 , T=𝜃∗𝐾 𝜔 𝑖𝑛𝑡𝑜 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 [𝜃] 𝐹= 𝑥 𝐶 , F=𝑥∗𝐾 𝑣 𝑖𝑛𝑡𝑜 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 [x] 𝜙 𝑖𝑛𝑡𝑜 𝑣𝑜𝑙𝑢𝑚𝑒 [𝑣] 𝑝= 𝑣 𝐶 11/19/2018

Elements Storage – P-type Stored quantity State Output 𝑉 𝑖𝑛𝑡𝑜 𝑓𝑙𝑢𝑥 𝑙𝑖𝑛𝑘𝑎𝑔𝑒 𝜆 𝐼= 𝜆 𝐿 Electrical Rotation Translation Hydraulics 𝑣= 𝐿 𝐽 𝑇 𝑖𝑛𝑡𝑜 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 impulse [𝐿] 𝑣= 𝑝 𝑚 𝐹 𝑖𝑛𝑡𝑜 𝑖𝑚𝑝𝑢𝑙𝑠𝑒 [p] 𝑝 𝑖𝑛𝑡𝑜 𝑓𝑙𝑢𝑖𝑑 𝑖𝑚𝑝𝑢𝑙𝑠𝑒 𝑓𝑝 𝜙=𝜌∗ 𝐿 𝐴 ∗𝑓𝑝 11/19/2018

Question Can you answer this? Give the element equation of a ideal mass. Why would it be usefull, or not to define a third type of storage? Given a spring, what quantities would change when a exact copy of the spring is added next to it? 11/19/2018

Elements Transformers 2-port Power continuity, Power goes in, power comes out the other side Usually works via other domain So e1*f1 = e2*f2 Two solutions: Transformer Gyrator 11/19/2018

Elements Transformer Relates Effort to effort, Flow to flow. For electrical: 𝑉 𝑖𝑛 =𝑛∗ 𝑉 𝑜𝑢𝑡 Power continuity then results in: 𝐼 𝑜𝑢𝑡 =𝑛∗ 𝐼 𝑖𝑛 11/19/2018

Elements Transformer Element Equations Other domain 𝑉 𝑖𝑛 =𝑛∗ 𝑉 𝑜𝑢𝑡 , 𝐼 𝑜𝑢𝑡 =𝑛∗ 𝐼 𝑖𝑛 𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 Electrical Rotation Translation Hydraulics 𝑇 𝑖𝑛 =𝑛∗ 𝑇 𝑜𝑢𝑡 , 𝜔 𝑜𝑢𝑡 =𝑛∗ 𝜔 𝑖𝑛 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝐹 𝑖𝑛 =𝑛∗ 𝐹 𝑜𝑢𝑡 , 𝑣 𝑜𝑢𝑡 =𝑛∗ 𝑣 𝑖𝑛 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑝 𝑖𝑛 =𝑛∗ 𝑝 𝑜𝑢𝑡 , 𝜙 𝑜𝑢𝑡 =𝑛∗ 𝜙 𝑖𝑛 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 11/19/2018

Elements Gyrator Relates Effort to Flow, Flow to Effort. For electric motor: 𝑉 𝑖𝑛 =𝑛∗ 𝑣 𝑜𝑢𝑡 Power continuity then results in: 𝐹 𝑜𝑢𝑡 =𝑛∗ 𝐼 𝑖𝑛 Usually works cross domain 11/19/2018

Elements Transformer From domain From domain Element Equations 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑇 𝑖𝑛 =𝑛∗ 𝜙 𝑜𝑢𝑡 , 𝑝 𝑜𝑢𝑡 =𝑛∗𝜔 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑉 𝑖𝑛 =𝑛∗ 𝜔 𝑜𝑢𝑡 , 𝐹 𝑜𝑢𝑡 =𝑛∗ 𝐼 𝑖𝑛 11/19/2018

Question Can you answer this Can you make a transformer using three gyrators? Design a two transformers using a different domain then in slide 29. 11/19/2018

Bondgraphs Graph, BondGraph 11/19/2018

Bondgraphs Why Bondgraphs Bondgraph Elements Junctions (0, 1) Causality

Why bondgraphs Dynamic systems based on energy. Keep energy flows together, A bond: Energy Effort Flow Direction 11/19/2018

Why Bondgraphs Power transmission Bond graps provide information about 2 quantities (actually power) Resistor Example Bond equations: Element Equation Conclusion: 𝑉 𝑏𝑜𝑛𝑑 = 𝐼 𝑏𝑜𝑛𝑑 𝑃 𝑏𝑜𝑛𝑑 = 𝑉 𝑏𝑜𝑛𝑑 2 𝑅 𝐼 𝑏𝑜𝑛𝑑 = 𝐼 𝑅 𝑉 𝑏𝑜𝑛𝑑 = 𝑉 𝑅 𝑉 𝑅 =𝑅 ∗ 𝐼 𝑅 11/19/2018

Why bondgraphs Direction Bondgraphs signify power flow. Direction defines positive power direction: Resistor consumes power: Resistor generates power: Negative power is generated 11/19/2018

Elements Based on the last 30 minutes or so 1-ports Resistors (R) Sources (Effort, Flow) Storage (p-type,q-type) 2-ports Transformers Gyrators 11/19/2018

Elements Resistor Icon: R Parameter: R Element equation: 𝑒=𝑓∗𝑅 11/19/2018

Elements Sources Source of Effort Icon: Se Parameter: e (effort) Equation: 𝑒=𝑒, 𝑓=𝑤ℎ𝑎𝑡𝑒𝑣𝑒𝑟 Source of Flow Icon: Sf Parameter: f (flow) Equation: 𝑓=𝑓, 𝑒=𝑤ℎ𝑎𝑡𝑒𝑣𝑒𝑟 11/19/2018

Question Can you answer this? Give equations for the following systems: 11/19/2018

Elements Storage Elements Q-type element Symbol C Parameter: C Equations: q= 𝑓 𝑑𝑡,𝑒= 𝑞 𝑐 P-type element Symbol I Parameter: I Equations: p= 𝑒 𝑑𝑡,𝑓= 𝑞 𝐼 11/19/2018

Elements Tranformers Tranformer Symbol: Parameter: n Equations 𝑒 1 =𝑛 ∗ 𝑒 2 , 𝑓 2 =𝑛∗ 𝑓 1 Gyrator Equations 𝑒 1 =𝑛 ∗ 𝑓 2 , 𝑒 2 =𝑛∗ 𝑓 1 11/19/2018

Junctions Connecting things up N-ports 0 junction Common effort Sum of flows, dependant on direction 1 junction Common flow Sum om efforts, dependant of direction 11/19/2018

Question Can you answer this? Equivalent electrical system for these bondgraphs: 11/19/2018

Causality The cause for all this Turning a equation model, into a calulation model: Without causality, a set of equations: 𝑒 𝑟 = 𝑒 𝑠𝑒 , 𝑓 𝑒𝑠 = 𝑓 𝑟 , 𝑓 𝑟 = 𝑒 𝑟 𝑅 With causality, a set of operations 𝑒 𝑟 ← 𝑒 𝑠𝑒 , 𝑓 𝑟 ← 𝑒 𝑟 𝑅 , 𝑓 𝑒𝑠 ← 𝑓 𝑟 Causallity is independant of the direction of the bond. 11/19/2018

Causality Meaning of the bar Side of the bar: Effort is applied to this side and a flow comes back. Side without the bar Flow is apploed to this side and a effort comes back. 11/19/2018

Question Can you answer this What causality must a source of effort have? And a source of flow? 11/19/2018

Causality Prefered causality The causality of sources elements is fixed Can be determined from the equations. 11/19/2018

Causality Prefered causality The causality of storage elements determine the type of equation Intergral <preffered for simulation Differential Eg: e← 1 𝐶 𝑓 𝑑𝑡 𝑓←𝑐 𝑑𝑒 𝑑𝑡 11/19/2018

Causality Dependant causality Transformers and gyrators have a causality that depends on the other port: 11/19/2018

Causality Dependant causality Junctions have a dependant causality Only one bond can determine effort 1 junction Only one bond can determine flow 11/19/2018

Causality assignment Start with: Fixed causality Fill in all dependant causalities Next, prefered causality Next, pick one. 11/19/2018

Question Can you answer this Assign causality to the following schematics 11/19/2018

Coffee Break 11/19/2018

Practice makes perfect Assignments Practice makes perfect

Assignments Teaching assistants: Thomas Klostermann Martijn Schouten Tim Broenink 11/19/2018

Assignments Two sets of assignments, A and B Found on: www.scintilla.utwente.nl/docs/cursus/SysDyn Or here. Make one set now

Practice makes perfect Vrimibo Practice makes perfect