An Illustration of 0.1µm CMOS layout design on PC

Slides:



Advertisements
Similar presentations
Metal Oxide Semiconductor Field Effect Transistors
Advertisements

Derek Wright Monday, March 7th, 2005
High-K Dielectrics The Future of Silicon Transistors
SOI BiCMOS  an Emerging Mixed-Signal Technology Platform
EE 447 VLSI Design Lecture 5: Wires. EE 447VLSI Design 6: Wires2 Outline Introduction Wire Resistance Wire Capacitance Wire RC Delay Crosstalk Wire Engineering.
Lecture #25a OUTLINE Interconnect modeling
EE141 © Digital Integrated Circuits 2nd Introduction 1 The First Computer.
EZ-COURSEWARE State-of-the-Art Teaching Tools From AMS Teaching Tomorrow’s Technology Today.
Device Physics – Transistor Integrated Circuit
CSE477 L01 Introduction.1Irwin&Vijay, PSU, 2002 ECE484 VLSI Digital Circuits Fall 2014 Lecture 01: Introduction Adapted from slides provided by Mary Jane.
E. Sicard - ultra deep submicron Ultra-Deep submicron technology Etienne Sicard Insa
Present – Past -- Future
Master in Microelectronics technology and Manufacturing Management E. Sicard - introducting 90nm 4. Introducing 90nm technology.
EE141 © Digital Integrated Circuits 2nd Introduction 1 Principle of CMOS VLSI Design Introduction Adapted from Digital Integrated, Copyright 2003 Prentice.
Trends in IC technology and design J. Christiansen CERN - EP/MIC
Overview of VLSI 魏凱城 彰化師範大學資工系. VLSI  Very-Large-Scale Integration Today’s complex VLSI chips  The number of transistors has exceeded 120 million 
EE141 © Digital Integrated Circuits 2nd Introduction 1 EE4271 VLSI Design Dr. Shiyan Hu Office: EERC 731 Adapted and modified from Digital.
RTL Simulator for VChip 1999/11/11 이재곤. RTL Simulator for VChip  현재 상황 Compiled-code 로 변환 중  VBS 의 내장된 obj 파일을 이용하려 하였으나 제 대로 구현되어 있지 않음  Obj 파일 :
L ECE 4243/6243 Fall 2016 UConn F. Jain Notes Chapter L11 (page ). FET Operation slides Scaling Laws of FETs (slides 9-22)
ECE484 VLSI Digital Circuits Fall 2016 Lecture 01: Introduction
14NM FINFET IN MICROWIND.
An Introduction to VLSI (Very Large Scale Integrated) Circuit Design
Digital Integrated Circuits for Communication
THE CMOS INVERTER.
The Interconnect Delay Bottleneck.
ROADMAP TO NANOMETER.
Floating-Gate Devices / Circuits
Introduction to VLSI ASIC Design and Technology
MOS TRANSISTOR (Remind the basics, emphasize the velocity saturation effects and parasitics) Structure of a NMOS transistor.
THE MOS DEVICE.
20-NM CMOS DESIGN.
VLSI design Short channel Effects in Deep Submicron CMOS
by Alexander Glavtchev
14-NM TECHNOLOGY & FinFET in MICROWIND
TECHNOLOGY TRENDS.
VLSI Design MOSFET Scaling and CMOS Latch Up
Downsizing Semiconductor Device (MOSFET)
EE141 Chapter 3 VLSI Design The Devices March 28, 2003.
1. Illustration of the Technology Scale down
IC TECHNOLOGY.
3. Advanced Rules & Models
CMOS Technology Flow varies with process types & company
MOSFET Scaling ECE G201.
Multiple Drain Transistor-Based FPGA Architectures
Lecture 19 OUTLINE The MOSFET: Structure and operation
Chapter 10: IC Technology
Overview of VLSI 魏凱城 彰化師範大學資工系.
Optional Reading: Pierret 4; Hu 3
Device Physics – Transistor Integrated Circuit
Transistors on lead microprocessors double every 2 years Moore’s Law in Microprocessors Transistors on lead microprocessors double every 2 years.
Reading: Finish Chapter 19.2
MOSFET Scaling ECE G201.
Downsizing Semiconductor Device (MOSFET)
2. Introduction to Design Rules
INTRODUCING MICROWIND
FIELD EFFECT TRANSISTOR
Summary Current density in a signal line was estimated, based on the simple circuit shown in Fig.1. This circuit is scaled down according to ITRS 2003.
University of Colorado at Boulder
Chapter 10: IC Technology
CMOS Technology Flow varies with process types & company
Device Physics – Transistor Integrated Circuit
Lecture #15 OUTLINE Diode analysis and applications continued
Reading (Rabaey et al.): Sections 3.5, 5.6
Technology scaling Currently, technology scaling has a threefold objective: Reduce the gate delay by 30% (43% increase in frequency) Double the transistor.
Analysis of history effect in PD-SOI logic Gates
Chapter 10: IC Technology
Beyond Si MOSFETs Part IV.
Impact of Technology Scaling
Beyond Si MOSFETs Part 1.
Dr. Hari Kishore Kakarla ECE
Presentation transcript:

An Illustration of 0.1µm CMOS layout design on PC Etienne Sicard, Sonia Bendhia etienne.sicard@insa-tlse.fr sonia.bendhia@insa-tlse.fr http://intrage.insa-tlse.fr/~etienne

1. The technology scale down 2. Design trends 3. The MOS device Summary 1. The technology scale down 2. Design trends 3. The MOS device 4. CMOS cell design 5. Signal propagation 6. Embedded Memory 7. SOI 11/19/2018 E. Sicard - EWME'02 Vigo

1. The technology scale down 10 years of evolution 1992 2002 0.7µm, 2 metal layers Up to 100K transistors, 50MHz 0.12µm, 7 metal Up to 500MT, 1.5GHz IC Introduction to µ-Electronics on PC MSK, PROF, 3D Introduction to CMOS design on PC Microwind, Dsch 11/19/2018 E. Sicard - EWME'02 Vigo

1. The technology scale down 1992 2000 2003 0.7 µm 0.18 µm 90nm l Devices 1992-2002 Slightly decreased 1014 neurons Slightly increased number of students Endless fight against obsolete teaching Constant 24H per day 6 nMOS, 6pMOS 1 nMOS, 1pMOS 3 nMOS, 3pMOS Interconnects 2 layers 7 layers 8 layers 5V Frequency 2V 1V 1.5GHz 50MHz 500MHz 11/19/2018 E. Sicard - EWME'02 Vigo

2. Design trends 100 10 1.0 0.1 0.01 Complexity (Millions transistors) Link Controller RF RS Host Interface Code Manager Complexity (Millions transistors) Technology always ahead 100 System design 10 IP design Logic design 1.0 Microwind Layout design 0.1 0.01 1992 1994 1996 1998 2000 2002 2004 11/19/2018 E. Sicard - EWME'02 Vigo

2. Design trends Core Interface 1995 1997 1999 2001 2003 level 3 BSIM Physical SystemC VHDL, Verilog VHDL-Ams Structural Interface IBIS IBIS v2 IBISv3 IBIS-ML Physical 1 10 100 1000 1970 1980 1990 2000 2010 Level 1 Level 2 Level 3 Bsim MM9 Bsim2 Bsim4 Model parameters BsimSOI 1995 1997 1999 2001 2003 11/19/2018 E. Sicard - EWME'02 Vigo

3. The MOS devices Dependence of Id vs. Length Impact ionization at high Vds Important Ioff current for small Length Complex dependence of Vt vs. Length 11/19/2018 E. Sicard - EWME'02 Vigo

3. The MOS devices Ultra High Speed Low Leakage EEProm High Voltage MRam RF New physical properties in EEPROM and MRam High Speed Application-oriented MOS device Same basic mechanism 11/19/2018 E. Sicard - EWME'02 Vigo

3. The MOS devices High Speed Low Leakage Small Ion reduction High current MOS, low VT Shorter channel L=100nm, high leakage (Critical path) Low Leakage Default MOS device, high VT low leakage (<1nA) Small Ion reduction Ioff ~100pA Ioff ~10nA Demo 11/19/2018 E. Sicard - EWME'02 Vigo

4. CMOS cell design Stacked vias Salicide/unsalicide (Large R) but… Antenna effects Contact parasitic effect (20 ) 11/19/2018 E. Sicard - EWME'02 Vigo

5. Signal propagation Al 0.35 µm 0.18µm 0.7 µm Cu Al Demo Volt Volt 2 1 3 Volt 4 5 1 3 2 0.5 1.5 1 2 0.35 µm 0.18µm 0.7 µm Cu Al Al 0.5 1.0ns 0.25 0.75 1.0 1.5ns 0.5 1 2 3ns Demo Repeaters help to propagate signals at long distance 3Rx3C=9RC (680ps) 3RC+2tgate (380ps) 3mm 1mm 11/19/2018 E. Sicard - EWME'02 Vigo

5. Signal propagation 0.7µm Small coupling 0.12µm Strong coupling Very large noise, close from fault Low K to reduce coupling Long distance routing is forbidden (Critical routing length 2mm in 0.12µm) 11/19/2018 E. Sicard - EWME'02 Vigo

Cmos Embedded memories 80% of a system-on-chip Bottleneck for bandwidth Cmos Embedded memories Volatile eDRAM SRAM Non volatile ROM EEPROM FRAM 11/19/2018 E. Sicard - EWME'02 Vigo

6. Embedded Memories Parasitic capacitance: 2fF CB CS Parasitic capacitance: 2fF Specific capacitance: 3-30fF 11/19/2018 E. Sicard - EWME'02 Vigo

6. Embedded Memories Demo Create a small channel VDD Cannot create channel VDD Demo Electrons injected in the floating gate by tunneling 11/19/2018 E. Sicard - EWME'02 Vigo

7. SOI The next major evolution? CMOS compatible Less distance between nMOS and pMOS Less capacitance Less leakage Kink effect Fully or partially depleted? >50% faster circuits 11/19/2018 E. Sicard - EWME'02 Vigo

Conclusion The technology scale down has been illustrated Design trend towards higher levels of abstraction More MOS options oriented to applications in 0.1µm technology Increased interconnect layers improve density but many issues RC delay & crosstalk illustrated Embedded memories have several design styles and technological option Substrate below 0.1µm should be in SOI Lots of educational messages illustrated in Microwind PC tool Freeware available at http://intrage.insa-tlse.fr/~etienne 11/19/2018 E. Sicard - EWME'02 Vigo

References International Roadmap for Semiconductors MOSFET models for SPICE simulations (BSIM3v3, BSIM4) Liu,Wiley, 2001 Low-voltage SOI CMOS Devices, Kuo, Wiley, 2001 Introduction to VLSI circuits & systems Uyemura, Wiley, 2002 CMOS circuit design Layout & simulation, Baker, IEEE press, 1998 IBM press releases & web site 11/19/2018 E. Sicard - EWME'02 Vigo