Chapter 23 Electric Potential

Slides:



Advertisements
Similar presentations
Gauss’s Law Electric Flux
Advertisements

Announcements Monday guest lecturer: Dr. Fred Salsbury. Solutions now available online. Will strive to post lecture notes before class. May be different.
Applications of Gauss’s Law
Copyright © 2009 Pearson Education, Inc. Chapter 21 Electric Charge and Electric Field.
Chapter 24 Gauss’s Law.
Chapter 24 Gauss’s Law.
1/18/07184 Lecture 71 PHY 184 Spring 2007 Lecture 7 Title: Using Gauss’ law.
Chapter 24 Gauss’s Law.
Nadiah Alanazi Gauss’s Law 24.3 Application of Gauss’s Law to Various Charge Distributions.
Charles Allison © 2000 Chapter 22 Gauss’s Law HW# 5 : Chap.22: Pb.1, Pb.6, Pb.24, Pb.27, Pb.35, Pb.46 Due Friday: Friday, Feb 27.
Gauss’ Law. Class Objectives Introduce the idea of the Gauss’ law as another method to calculate the electric field. Understand that the previous method.
Summer July Lecture 3 Gauss’s Law Chp. 24 Cartoon - Electric field is analogous to gravitational field Opening Demo - Warm-up problem Physlet /webphysics.davidson.edu/physletprob/webphysics.davidson.edu/physletprob.
Physics.
Gauss’s Law The electric flux through a closed surface is proportional to the charge enclosed The electric flux through a closed surface is proportional.
Last Lecture Gauss’s law Using Gauss’s law for: spherical symmetry This lecture Using Gauss’s law for: line symmetry plane symmetry Conductors in electric.
Chapter 21 Electric Charge and Electric Field
Electric Charge and Electric Field
Chapter 21 Gauss’s Law. Electric Field Lines Electric field lines (convenient for visualizing electric field patterns) – lines pointing in the direction.
Electric Flux and Gauss Law
Gauss’sLaw 1 P05 - The first Maxwell Equation A very useful computational technique This is important!
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Chapter 24 Gauss’s Law. Let’s return to the field lines and consider the flux through a surface. The number of lines per unit area is proportional to.
Summer July Lecture 3 Gauss’s Law Chp. 24 Cartoon - Electric field is analogous to gravitational field Opening Demo - Warm-up problem Physlet /webphysics.davidson.edu/physletprob/webphysics.davidson.edu/physletprob.
Copyright © 2009 Pearson Education, Inc. Chapter 21 Electric Charge and Electric Field.
1 Lecture 3 Gauss’s Law Ch. 23 Physlet ch9_2_gauss/default.html Topics –Electric Flux –Gauss’
Application of Gauss’ Law to calculate Electric field:
Copyright © 2009 Pearson Education, Inc. Chapter 22 Gauss’s Law.
今日課程內容 CH21 電荷與電場 電場 電偶極 CH22 高斯定律 CH23 電位.
Wednesday, Sep. 14, PHYS Dr. Andrew Brandt PHYS 1444 – Section 04 Lecture #5 Chapter 21: E-field examples Chapter 22: Gauss’ Law Examples.
A b c. Choose either or And E constant over surface is just the area of the Gaussian surface over which we are integrating. Gauss’ Law This equation can.
Unit 1 Day 11: Applications of Gauss’s Law Spherical Conducting Shell A Long Uniform Line of Charge An Infinitely Large, Thin Plane of Charge Experimental.
Charles Allison © 2000 Chapter 22 Gauss’s Law.. Charles Allison © 2000 Problem 57.
Copyright © 2009 Pearson Education, Inc. Applications of Gauss’s Law.
Chapter 22 Gauss’s Law HW 3: Chapter 22: Pb.1, Pb.6, Pb.24,
24.2 Gauss’s Law.
Chapter 22 Gauss’s Law Electric charge and flux (sec & .3)
Gauss’s Law Basic Concepts Electric Flux Gauss’s Law
Chapter 18 Electric Potential
Chapter 23 Electric Potential
Physics 212 Lecture 4 Gauss’ Law.
Problem-Solving Guide for Gauss’s Law
Gauss’s Law ENROLL NO Basic Concepts Electric Flux
Chapter 23 Electric Potential
Gauss’s Law Electric Flux
Chapter 23 Electric Potential
PHYS 1444 – Section 003 Lecture #5
Reading: Chapter 28 For r > a Gauss’s Law.
15.6 Conductors in Electrostatic Equilibrium
TOPIC 3 Gauss’s Law.
Chapter 21 Gauss’s Law.
ELECTROSTATICS - III - Electrostatic Potential and Gauss’s Theorem
Chapter 23 Electric Potential
C. less, but not zero. D. zero.
Gauss’s Law Electric Flux
Chapter 22 Gauss’s Law HW 4: Chapter 22: Pb.1, Pb.6, Pb.24,
Question for the day Can the magnitude of the electric charge be calculated from the strength of the electric field it creates?
Gauss’s Law (II) Examples: charged spherical shell, infinite plane,
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
From last time… Motion of charged particles
Last Lecture This lecture Gauss’s law Using Gauss’s law for:
Norah Ali Al-moneef King Saud university
Phys102 Lecture 3 Gauss’s Law
Physics for Scientists and Engineers, with Modern Physics, 4th edition
Chapter 22 Gauss’s Law The Study guide is posted online under the homework section , Your exam is on March 6 Chapter 22 opener. Gauss’s law is an elegant.
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Chapter 23 Electric Potential
Gauss’s Law: applications
Chapter 23 Electric Potential
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Example 24-2: flux through a cube of a uniform electric field
Presentation transcript:

Chapter 23 Electric Potential The Study guide is posted online, Your exam is on Feb. 26 Chapter 23 opener. We are used to voltage in our lives—a 12-volt car battery, 110 V or 220 V at home, 1.5 volt flashlight batteries, and so on. Here we see a Van de Graaff generator, whose voltage may reach 50,000 V or more. Voltage is the same as electric potential difference between two points. Electric potential is defined as the potential energy per unit charge. The children here, whose hair stands on end because each hair has received the same sign of charge, are not harmed by the voltage because the Van de Graaff cannot provide much current before the voltage drops. (It is current through the body that is harmful, as we will see later.)

22-3 Applications of Gauss’s Law Example 22-5: Nonuniformly charged solid sphere. Suppose the charge density of a solid sphere is given by ρE = αr2, where α is a constant. (a) Find α in terms of the total charge Q on the sphere and its radius r0. (b) Find the electric field as a function of r inside the sphere. Solution: a. Consider the sphere to be made of a series of spherical shells, each of radius r and thickness dr. The volume of each is dV = 4πr2 dr. To find the total charge: Q = ∫ρE dV = 4παr05/5, giving α = 5Q/4πr05. b. The charge enclosed in a sphere of radius r will be Qr5/r05. Gauss’s law then gives E = Qr3/4πε0r05.

22-3 Applications of Gauss’s Law Example 22-6: Long uniform line of charge. A very long straight wire possesses a uniform positive charge per unit length, λ. Calculate the electric field at points near (but outside) the wire, far from the ends. Solution: If the wire is essentially infinite, it has cylindrical symmetry and we expect the field to be perpendicular to the wire everywhere. Therefore, a cylindrical gaussian surface will allow the easiest calculation of the field. The field is parallel to the ends and constant over the curved surface; integrating over the curved surface gives E = λ/2πε0R.

22-3 Applications of Gauss’s Law Example 22-7: Infinite plane of charge. Charge is distributed uniformly, with a surface charge density σ (σ = charge per unit area = dQ/dA) over a very large but very thin nonconducting flat plane surface. Determine the electric field at points near the plane. Solution: We expect E to be perpendicular to the plane, and choose a cylindrical gaussian surface with its flat sides parallel to the plane. The field is parallel to the curved side; integrating over the flat sides gives E = σ/2ε0.

22-3 Applications of Gauss’s Law Example 22-8: Electric field near any conducting surface. Show that the electric field just outside the surface of any good conductor of arbitrary shape is given by E = σ/ε0 where σ is the surface charge density on the conductor’s surface at that point. Solution: Again we choose a cylindrical gaussian surface. Now, however, the field inside the conductor is zero, so we only have a nonzero integral over one surface of the cylinder. Integrating gives E = σ/ε0.

22-3 Applications of Gauss’s Law The difference between the electric field outside a conducting plane of charge and outside a non-conducting plane of charge can be thought of in two ways: The field inside the conductor is zero, so the flux is all through one end of the cylinder. The non-conducting plane has a total charge density σ, whereas the conducting plane has a charge density σ on each side, effectively giving it twice the charge density.

22-3 Applications of Gauss’s Law Procedure for Gauss’s law problems: Identify the symmetry, and choose a Gaussian surface that takes advantage of it (with surfaces along surfaces of constant field). Draw the surface. Use the symmetry to find the direction of E. Evaluate the flux by integrating. Calculate the enclosed charge. Solve for the field.

23.1 Electrostatic Potential Energy •Gravitational Potential Energy •Electric Potential Energy •UE can result from either an attractive force or a repulsive force •Ug is due to an attractive force + - r r •Ug 0 when r ∞ •UE 0 when r ∞

23.1 Electrostatic Potential Energy •Gravitational Ug Attractive force •Electric UE Attractive force •Electric UE Repulsive force - + + + or - - > 0 < 0 Bigger when farther Bigger when farther Bigger when closer U r U r U r

Work and Electrostatic Potential energy - 1 FE 1 FE + 2 2 + + ∆U > 0 Work done BY conservative force ∆U < 0 U r U r 2 Move in the direction of force -->positive work 1 1 Move opposite the direction of force --> negative work 2

23-1 Electrostatic Potential Energy and Potential Difference Electric potential energy per unit charge Electric Potential = Electric Potential Difference: DV ~ Volts   Since only changes in potential energy are important, typically we are most interested in potential difference

23-1 Electrostatic Potential Energy and Potential Difference Only changes in potential can be measured,

Problem I