Molecular Shape (Geometry)

Slides:



Advertisements
Similar presentations
Molecular Shape Sect 9.4. VSEPR Model Valence Shell Electron Pair Repulsion Valence Shell Electron Pair Repulsion Electron pairs will position themselves.
Advertisements

1 Shapes of Molecules Determined by number of valence electrons of the central atom 3-D shape a result of bonded pairs and lone pairs of electrons Use.
Wed 2/11 and Thurs 2/12 Warm up #3: Draw the lewis dot structures 1.N 2 S (use FVS) 2.P 2 O 3 (think in chains) 3.C 3 H 8 (propane) 4.C 2 H 4 (ethane)
Covalent Bonding– VSEPR Theory
Molecular Shapes Chapter 6 Section 3. Molecular Structure It mean the 3-D arrangement of atoms in a molecule Lewis dot structures show how atoms are bonded.
VSEPR Valence Shell Electron Pair Repulsion Theory Predicting Molecular geometry or molecular shapes.
Carvone Bucky ball Molecular Geometry Chapter 8 Part 2.
can overlap in 2 different ways, forming either sigma or pi bonds.
Molecular Geometry Chapter 6.5.
VSEPR Theory Valence Shell Electron Pair Repulsion.
Molecular Shape Section 9.4
Chapter 9: Molecular Geometry and Bonding Theories What do the molecules look like and why?
Chemical Bonding and Molecular Geometry
Molecular Geometry VSEPR and beyond!. Molecular Geometry Three dimensional arrangment of atoms Molecular polarity determined by geometry and polarity.
Molecular Geometry. 2-D and 3-D Lewis Structures explain the two dimensional structure of molecules In order to model the actual structure of a molecule.
Chemical Bonding Chapter 6. Molecular Geometry VSEPR Valence – Shell, Electron Pair Repulsion Theory.
Cornell Notes (Section 8.4, especially page 263  Topic: Molecular Geometry  Date: 2/7/2012  VSEPR = Valence Shell Electron Pair Repulsion  Valence.
Chemistry Chapter 9 Notes #3. Representing Molecules Molecular Formula –Ex. CH 4 –Ex. H 2 O Structural/ Lewis Formula Ball & Stick Model Space Filling.
VESPR Theory. Molecular Structure Molecular structure – _______________ arrangement of atoms in a molecule.
Molecular Shapes Chapter 6 Section 3. Lewis dot structures show how atoms are bonded together, but they often do not illustrate the true shape of a molecule.
VSEPR Theory Valence Shell Electron Pair Repulsion.
Valence Shell Electron Pair Repulsion Theory
VSEPR THEORY.
VSEPR and Molecular Geometry
Valence Shell Electron Pair Repulsion Theory
TOPIC: Molecular Geometry (Shapes of Molecules) Essential Question: How do you determine the different shapes of molecules?
Molecular Geometry (VSEPR)
Timberlake LecturePLUS
Molecular Geometries and Bonding Theories
Ch. 6 – Molecular Structure
Molecular Shapes.
Valence Shell Electron Pair Repulsion Theory
Valence Shell Electron Pair
MOLECULAR GEOMETRY Topic # 18
Ch. 6.5 Bonding Theories Molecular Geometry.
Valence Shell Electron Pair Repulsion Theory (VSEPR)
Bellwork Monday Draw the following Lewis dot structures. CCl4 NH4+
Valence Shell Electron Pair Repulsion
MOLECULAR GEOMETRY Bonding Unit.
II. Molecular Geometry (p. 183 – 187)
Molecular Geometry VSEPR and beyond!.
The VSEPR Theory Section 4.3.
O = O V___________ S________ E________ P______ R____________
Valence Shell Electron Pair Repulsion Theory
Molecular Structure Molecular Geometry.
Molecular Shapes: True shapes of molecules
Valence Shell Electron Pair Repulsion Theory
Valence Shell Electron Pair Repulsion
Chapter 10 Properties of Solids and Liquids
Valence Shell Electron Pair Repulsion Theory
Objectives To understand molecular structure and bond angles
Molecular shapes.
VESPR Theory.
Molecular Structure II. Molecular Geometry.
Molecular Geometry.
II. Molecular Geometry (p. 183 – 187)
Bellwork # What is electronegativity?
Valence Shell electron pair repulsion model 3D models
Molecular Shapes It mean the 3-D arrangement of atoms in a molecule
Molecular Geometry.
Molecular Shapes VSEPR Model
VSEPR THEORY.
Molecular Shapes Mrs. Chan.
Molecular Geometry.
Valence Shell Electron Pair Repulsion
II. Molecular Geometry (p. 183 – 187)
II. Molecular Geometry (p. 183 – 187)
Valence Shell Electron Pair Repulsion
Valence Shell Electron Pair Repulsion Theory
Valence Shell Electron Pair Repulsion (VSEPR) Theory
Presentation transcript:

Molecular Shape (Geometry) Valence Shell Electron Pair Repulsion Theory (VSEPR)

Electron Geometry vs Molecular Geometry 4 pairs of electrons require 4 electron orbitals shape of molecule depends on nuclei only shape for molecule is TRIGONAL PYRAMIDAL tetrahedral arrangement of electrons

Electron Geometry vs Molecular Geometry 4 pairs of electrons require 4 electron orbitals shape of molecule depends on nuclei only tetrahedral arrangement of electrons shape for molecule is BENT

Electron Geometry vs Molecular Geometry 3 pairs of electrons require 3 electron orbitals shape of molecule depends on nuclei only shape for molecule is BENT trigonal planar arrangement of electrons

4 electron pairs, 1 lone pair

4 electron pairs, 2 lone pairs