Bipolar Processes Description

Slides:



Advertisements
Similar presentations
Lecture Metal-Oxide-Semiconductor (MOS) Field-Effect Transistors (FET) MOSFET Introduction 1.
Advertisements

MICROWAVE FET Microwave FET : operates in the microwave frequencies
Transistors These are three terminal devices, where the current or voltage at one terminal, the input terminal, controls the flow of current between the.
Semiconductor basics 1. Vacuum tubes  Diode  Triode 2. Semiconductors  Diode  Transistors Bipolar Bipolar Field Effect Field Effect 3. What’s next?
MOSFETs Monday 19 th September. MOSFETs Monday 19 th September In this presentation we will look at the following: State the main differences between.
For the exclusive use of adopters of the book Introduction to Microelectronic Fabrication, Second Edition by Richard C. Jaeger. ISBN © 2002.
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
EE314 IBM/Motorola Power PC620 IBM Power PC 601 Motorola MC68020 Field Effect Transistors.
Basic Bipolar Process Description Bipolar Process Flow –Vertical npn –Lateral pnp –JFET –Prepared by Randy Geiger, September 2001.
BJT Processing 1. Implantation of the buried n + layer 2. Growth of the epitaxial layer 3. p + isolation diffusion 4. Base p-type diffusion 5. Emitter.
Katedra Experimentálnej Fyziky Bipolar technology - the size of bipolar transistors must be reduced to meet the high-density requirement Figure illustrates.
1 LW 6 Week 6 February 26, 2015 UCONN ECE 4211 F. Jain Review of BJT parameters and Circuit Model HBT BJT Design February 26, 2015 LW5-2 PowerPoint two.
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 7, slide 1 Introduction to Electronic Circuit Design.
Transistors Three-terminal devices with three doped silicon regions and two P-N junctions versus a diode with two doped regions and one P-N junction Two.
© The McGraw-Hill Companies, Inc McGraw-Hill 1 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I 9.
Principles & Applications
ISAT 436 Micro-/Nanofabrication and Applications MOS Transistor Fabrication David J. Lawrence Spring 2001.
Introduction to Transistors
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 3, slide 1 Introduction to Electronic Circuit Design.
Introduction to MOS Transistors Section Outline Similarity Between BJT & MOS Introductory Device Physics Small Signal Model.
Full-Wave (Bridge) Rectifier
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 2, slide 1 Introduction to Electronic Circuit Design.
CHAPTER 5 FIELD EFFECT TRANSISTORS(part c) (FETs).
1 Concepts of electrons and holes in semiconductors.
Budapest University of Technology and Economics Department of Electron Devices Microelectronics, BSc course Bipolar IC technology:
Components and their operation. SMART Funded by The National Science Foundation Diode A diode is an semiconductor component that, in general, will pass.
Introduction to MOS Transistors
EE314 IBM/Motorola Power PC620 IBM Power PC 601 Motorola MC68020 Field Effect Transistors.
Electronics The Fourteenth and Fifteenth Lecture
The Devices: MOS Transistor
Bipolar Junction Transistor (BJT) Construction
Chapter 6 The Field Effect Transistor
Electronics The Sixteenth and Seventh Lectures
CHAPTER 2 Forward Biased, DC Analysis AC Analysis Reverse Biased
Different Types of Transistors and Their Functions
MOS Field-Effect Transistors (MOSFETs)
Electronics The Fifteenth and Sixteenth Lectures
FIELD EFFECT TRANSISTOR
Other Transistor Topologies
Instrumentation & Power Electronic Systems
EMT 112 / 4 ANALOGUE ELECTRONICS
Bipolar Junction Transistors (BJT)
Recall Last Lecture Common collector Voltage gain and Current gain
DMT 241 – Introduction to IC Layout
Prof. Haung, Jung-Tang NTUTL
Metal Semiconductor Field Effect Transistors
IGBT.
Introduction to Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) Chapter 7, Anderson and Anderson.
Field Effect Transistors (FETs)
Chapter 6 Field Effect Transistors (FETs)
A p-n junction is not a device
Electronics Chapter Four
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
VLSI Design MOSFET Scaling and CMOS Latch Up
Principles & Applications
Electronics The Thirteenth and Fourteenth Lecture
CMOS Devices PN junctions and diodes NMOS and PMOS transistors
Electronics Fundamentals
منبع: & کتابMICROELECTRONIC CIRCUITS 5/e Sedra/Smith
Lecture #25 OUTLINE Device isolation methods Electrical contacts to Si
MOSFET POWERPOINT PRESENTATION BY:- POONAM SHARMA LECTURER ELECTRICAL
FIELD EFFECT TRANSISTOR
Lecture #15 OUTLINE Diode analysis and applications continued
Subject Name: Electronic Circuits Subject Code:10cs32
9 Transistor Fundamentals.
Review & Problems.
Other Transistor Topologies
Other Transistor Topologies
Chapter 4 Field-Effect Transistors
Presentation transcript:

Bipolar Processes Description EE 330 Bipolar Processes Description

Bipolar Process Description p-substrate epi 2

Components Shown Vertical npn BJT Lateral pnp BJT JFET Diffusion Resistor Diode (and varactor) Note: Features intentionally not to scale to make it easier to convey more information on small figures 3

4

5

6

7

8

9

10

11

12

Area emitter factor is used to model other devices In contrast to the MOSFET where process parameters are independent of geometry, the bipolar transistor model is for a specific transistor ! Area emitter factor is used to model other devices Often multiple specific device models are given and these devices are used directly 13

D C A A’ B’ B C’ Top View D’ 14

Layer Mappings n+ buried collector isolation diffusion (p+) p-base diffusion n+ emitter contact metal passivation opening Notes: passivation opening for contacts not shown isolation diffusion intentionally not shown to scale 15

A A’ B’ B Dimmed features with A-A’ and B-B’ cross sections 16

A A’ B’ B 17

E C B vertical npn E B C lateral pnp C E C B E B 18

Diode (capacitor) G S D L W Resistor G D S n-channel JFET 19

Detailed Description of First Photolithographic Steps Only Top View Cross-Section View 20

A A’ B’ B n+ buried collector 21

Mask Numbering and Mappings n+ buried collector isolation diffusion (p+) p-base diffusion n+ emitter contact metal passivation opening Notes: passivation opening for contacts not shown isolation diffusion intentionally not shown to scale 22

Mask 1: n+ buried collector 23

n+ buried collector mask Exposure Develop Photoresist n+ buried collector mask Exposure Develop A-A’ Section B-B’ Section 24

Implant A-A’ Section B-B’ Section 25

Strip Photoresist A-A’ Section B-B’ Section 26

p-substrate A A’ n+ buried collector n+ buried collector B’ B 27

Grow Epitaxial Layer A-A’ Section B-B’ Section Note upward and downward diffusion of n+ buried collector B-B’ Section 28

Grow Epitaxial Layer p-substrate A’ A n+ buried collector 29

A A’ B’ B Isolation Diffusion 30

Mask Numbering and Mappings n+ buried collector isolation diffusion (p+) p-base diffusion n+ emitter contact metal passivation opening Notes: passivation opening for contacts not shown isolation diffusion intentionally not shown to scale 31

Mask 2: Isolation Deposition/Diffusion B’ B 32

Isolation Deposition/Diffusion A-A’ Section B-B’ Section 33

Isolation Diffusion p-substrate A’ A A A’ n+ buried collector 34

A A’ B’ B p-base diffusion 35

Mask Numbering and Mappings n+ buried collector isolation diffusion (p+) p-base diffusion n+ emitter contact metal passivation opening Notes: passivation opening for contacts not shown isolation diffusion intentionally not shown to scale 36

Mask 3: p-base diffusion 37

p-base Diffusion A-A’ Section B-B’ Section 38

p-base Diffusion p-substrate A’ A A A’ n+ buried collector 39

A A’ B’ B n+ emitter diffusion 40

Mask Numbering and Mappings n+ buried collector isolation diffusion (p+) p-base diffusion n+ emitter contact metal passivation opening Notes: passivation opening for contacts not shown isolation diffusion intentionally not shown to scale 41

Mask 4: n+ emitter diffusion B’ B 42

n+ emitter Diffusion A-A’ Section B-B’ Section 43

n+ emitter Diffusion p-substrate A’ A’ A A n+ buried collector 44

Oxidation A-A’ Section B-B’ Section 45

Oxidation p-substrate A’ A A n+ buried collector n+ buried collector B 46

A A’ B’ B contacts 47

Mask Numbering and Mappings n+ buried collector isolation diffusion (p+) p-base diffusion n+ emitter contact metal passivation opening Notes: passivation opening for contacts not shown isolation diffusion intentionally not shown to scale 48

Mask 5: contacts A A’ B’ B 49

Contact Openings A-A’ Section B-B’ Section 50

Contact Openings p-substrate A’ A A A’ n+ buried collector 51

A A’ B’ B metal 52

Mask Numbering and Mappings n+ buried collector isolation diffusion (p+) p-base diffusion n+ emitter contact metal passivation opening Notes: passivation opening for contacts not shown isolation diffusion intentionally not shown to scale 53

Mask 6: metal A A’ B’ B 54

Metalization A-A’ Section B-B’ Section 55

Pattern Metal A-A’ Section B-B’ Section 56

Metalization p-substrate A’ A A A’ A A’ n+ buried collector 57

Pattern Metal p-substrate A A’ A A’ B’ B n+ buried collector 58

E B C lateral pnp E C B vertical npn A-A’ Section C B E B C E B-B’ Section 59

G D S p-channel JFET A-A’ Section B-B’ Section 60

E C B vertical npn E B C lateral pnp C E C B E B 61

Diode (capacitor) G S D L W Resistor G D S n-channel JFET 62

Mask Numbering and Mappings n+ buried collector isolation diffusion (p+) p-base diffusion n+ emitter contact metal passivation opening Notes: passivation opening for contacts not shown isolation diffusion intentionally not shown to scale 63

Pad and Pad Opening p-substrate Epitaxial Layer Oxidation Metalization Protective Layer Pad Opening Mask Pad Opening 64

End of Lecture 19

The vertical npn transistor Emitter area only geometric parameter that appears in basic device model Transistor much larger than emitter Multiple-emitter devices often used (TTL Logic) and don’t significantly increase area

Enhancement and Depletion Devices Enhancement Mode n-channel devices VT > 0 Enhancement Mode p-channel devices VT < 0 Depletion Mode n-channel devices Depletion Mode p-channel devices

The JFET In triode region under reverse bias (channel thins)

The JFET In saturation (pinch-off) region under reverse bias and large VDS (channel pinches off)

The Schottky Diode Metal-Semiconductor Junction One contact is ohmic, other is rectifying Not available in all processes Relatively inexpensive adder in some processes Lower cut-in voltage than pn junction diode High speed

The MESFET Metal-Semiconductor Junction for Gate Drain and Source contacts ohmic, other is rectifying Usually not available in standard CMOS processes Must not forward bias very much Lower cut-in voltage than pn junction diode High speed

MOS and Bipolar Area Comparisions How does the area required to realize a MOSFET compare to that required to realize a BJT?

Consider Initially the Emitter in the BJT surrounded by a base region 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 Consider Initially the Emitter in the BJT surrounded by a base region 10 15 20 25 30 35 40 45 50 55

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 10 15 20 4l 25 30 3l 35 40 45 50 55

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 10 15 20 25 30 3l 2l 35 40 45 50 55

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 10 15 20 19l 25 30 3l 2l 35 40 45 50 55

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 10 15 20 23l 25 2l 30 3l 2l 35 40 45 50 55

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 47l 10 15 20 23l 25 14l 14l 30 3l 2l 35 40 45 50 55

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 51l 10 15 20 23l 25 14l 14l 14l 30 14l 3l 2l 35 40 45 50 55

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 51l 10 15 20 23l 14l 25 14l 30 3l 2l 35 40 45 50 55

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 51l 10 15 20 23l 14l 25 14l 30 3l 4l 2l 35 40 45 50 55

Note: 26l required Between p-base and isolation diffusion NOT TO SCALE 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 61l 10 15 20 14l 12l 25 19l 14l 2l 2l 2l 30 6l 3l 4l 2l 35 NOT TO SCALE Note: 26l required Between p-base and isolation diffusion 40 45 50 55

Note: Not to vertical Scale 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 71l 5 10 Note: Not to vertical Scale 14l 15 20 19l 25 12l 26l 44l 2l 30 6l 3l 2l 2l 35 Note: 26l required Between p-base and isolation diffusion 40 45 50 55

Note: Not to vertical Scale 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 71l 5 44l 10 Note: Not to vertical Scale 4l 15 20 25 12l 26l 2l 30 6l 3l 2l 2l 35 Note: 26l required Between p-base and isolation diffusion 40 45 50 55

Note: Not to vertical Scale 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 71l 5 44l 10 15 75l 20 48l 25 30 35 40 Note: Not to vertical Scale 45 50 55

Note: Not to vertical Scale 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 10 15 75l 20 48l 25 30 35 40 Bounding Area = 3600l2 45 Note: Not to vertical Scale 50 55

Comparison with Area for n-channel MOSFET in Bulk CMOS 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 10 Comparison with Area for n-channel MOSFET in Bulk CMOS 15 20 16l 25 13l 30 35 Bounding Area = 208l2 40 45 50 55

Minimum-Sized MOSFET Bounding Area = 168l2 Active Area = 6l2 14l 12l 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 10 Minimum-Sized MOSFET 15 20 14l 12l 25 30 35 Bounding Area = 168l2 Active Area = 6l2 40 45 50 55

Note: Not to vertical Scale 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1 5 10 15 75l 20 48l 25 30 35 40 MOSFET BJT 45 50 Note: Not to vertical Scale 55

Area Comparison between BJT and MOSFET BJT Area = 3600 l2 n-channel MOSFET Area = 168 l2 Area Ratio = 21:1

End of Lecture 17