Unit 1. Day 8..

Slides:



Advertisements
Similar presentations
HOW TO DIVIDE FRACTIONS
Advertisements

Multiplying and Dividing Real Numbers; Properties of Real Numbers
4-8 Example 2 Divide. Multiply to make the divisor a whole number.
Example 1 Dividing Integers Same sign, so quotient is positive. 5 = a. 8 – 40 – b. 14 – 2 = 7 – Different signs, so quotient is negative. c. 9 – 36 = 4.
Integers: Multiplication & Division
Dividing Rational Expressions Use the following steps to divide rational expressions. 1.Take the reciprocal of the rational expression following the division.
DIVIDING RATIONAL NUMBERS
EXAMPLE 1 Same sign, so quotient is positive. = –7 Different signs, so quotient is negative. c. 36 –9 = –4 Different signs, so quotient is negative. =
Lesson 5-6 Example Find 312 ÷ 8. Use short division. Step 1Look at the first digit in the dividend. Since the divisor is greater than the first digit,
7 th Grade Mathematics Unit 2: Lesson 3 Anna Taylor and Debra Conover Properties of Multiplying Rational Numbers.
1.8 DIVIDING RATIONAL NUMBERS I CAN USE THE RULES FOR DIVIDING INTEGERS TO DIVIDE RATIONAL NUMBERS AND SOLVE PROBLEMS BY DIVIDING RATIONAL NUMBERS.
Unit 4 Day 4. Parts of a Fraction Multiplying Fractions Steps: 1: Simplify first (if possible) 2: Then multiply numerators, and multiply denominators.
Warm up Objective: To divide polynomials Lesson 6-7 Polynomial Long Division.
Warm-Up Divide 1.) 560 ÷ 8 = 2.) 105 ÷ 3 =. Essential question: What are the steps to divide whole numbers? Name date period Long Division Quotient: The.
Bell Work: -3 x -6 = 5 x -6 = -7 x 2 = -9 x -8 = 8 x -5 = 4 x 8 =
Dividing Rational Numbers Rational Numbers ~. Dividing Rational Numbers RULES: RULES: 1. When multiplying or dividing integers with the same signs, the.
Copyright © Cengage Learning. All rights reserved. Functions 1 Basic Concepts.
Interesting Integers – Part Dos

Algebra 1 Notes: Lesson 2-2 Rational Numbers
Multiplying and Dividing Integers
Multiplying and Dividing Integers
Multiplying and Dividing Integers
Positive x Positive = Positive Positive x Negative = Negative
Multiplying and Dividing Rational Numbers
0-5: Multiply and Dividing Rational Numbers
Multiplying Integers.
Unit 2. Day 10..
Unit 2. Day 1..
Opening Activity Complete the following problems in your spiral on your “Multiplying Positive & Negative Integers” page. Write both the expression.
HOW TO DIVIDE FRACTIONS
1.8 Dividing Rational Numbers
Unit 1. Day 2..
Unit 1. Day 5..
Unit 1. Day 4..
Unit 1. Day 7..
Multiplying and Dividing Integers Unit 1 Lesson 11
Unit 2. Day 6..
Unit 1. Day 7..
Unit 2. Day 5..
Dividing Fractions Lesson 5-9.
Unit 2. Day 4..
I can divide integers at least at 80% mastery.
Unit 2. Day 5..
MATH TERMS Terms we need to know!.
Unit 2. Day 11..
Title of Notes: Multiplying and Dividing Integers pg. 9 RS
Unit 2. Day 7..
Dividing Rational Numbers
Unit 1. Day 8..
Algebra 1 Section 1.6.
1-8 Multiplying and Dividing Integers
Multiplying Integers SAME SIGNS??? Answer will be POSITIVE. ex)
Unit 2. Day 14..
Unit 1. Day 9..
Unit 2. Day 14..
Unit 2. Day 10..
Unit 2. Day 13..
Unit 2. Day 8..
Unit 2. Day 12..
Multiplying and Dividing Integers
Division Opposite of multiplication.
Dividing Integers ÷ = + ÷ = + ÷ = + ÷ =.
DIRECTED NUMBERS.
Math-7 NOTES 1) 3x = 15 2) 4x = 16 Multiplication equations:
Multiplying and Dividing Rational Numbers
Dividing negative fractions
Multiplication and Division of Integers
Division of Real Numbers
Divide two Integers.
Presentation transcript:

Unit 1. Day 8.

Please get out paper for today’s lesson Name Date Period -------------------------------------------------------- Topic: Dividing Integers 7.NS.A.2 Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers

Review Division Terms Dividing  fractions Negative signs Order of Operations

dividend quotient 16 ÷ −2 =−8 16÷−2=−8 divisor

Review Division Terms Dividing  fractions Negative signs Order of Operations

12 12÷−6= −6 − 2 12 = − 2 −6 2∙2∙3 − 2 1 = = = −2 −1∙2∙3

12 12÷−18= −18 − ? 12 = − ? −18 2∙2∙3 − 2 3 = = −1∙2∙3∙3 𝑆𝑜𝑚𝑒𝑡𝑖𝑚𝑒𝑠 𝑑𝑖𝑣𝑖𝑑𝑖𝑛𝑔 𝑦𝑖𝑒𝑙𝑑𝑠 𝑎 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

−24÷−14= −24 −14 + ? −24 = + ? −14 12 7 −1∙2∙2∙2∙3 1 5 7 = = = −1∙2∙7 𝑆𝑜𝑚𝑒𝑡𝑖𝑚𝑒𝑠 𝑑𝑖𝑣𝑖𝑑𝑖𝑛𝑔 𝑦𝑖𝑒𝑙𝑑𝑠 𝑎 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

Review Division Terms Dividing  fractions Negative signs Order of Operations

−12 −12÷3= 3 − 4 12 12÷−3= −3 − 4 − − 12÷3 = 12 3 − 4

−18 −18÷6= 6 − 3 18 18÷−6= −6 − 3 − − 18÷6 = 18 6 − 3

𝑆.65 − 2 3 − 2 3 −2 3 2 −3

Review Division Terms Dividing  fractions Negative signs Order of Operations

M A P E D S Example A: 1−3+ 4 2 1−2 4 16 1−3+ 1−2 4 −2 +16 1−2 4 14 1−3+ 4 2 1−2 4 1−3+ 1−2 4 16 +16 1−2 4 −2 14 1−2 4 14 1− 8 P E M A D S 14 −2 −7

÷ 1−3+ 4 2 1−2 4 1−3+ 4 2 1−2 4 M A P E D S Example A: 1−3+ ÷ 1−2 4 16 1−3+ 4 2 1−2 4 1−3+ 4 2 ÷ 1−2 4 1−3+ ÷ 1−2 4 16 +16 ÷ 1−2 4 −2 ÷ 1−2 4 14 14 ÷ 1 −8 P E M A D S 14 ÷ −7 − 2

4 2+3 −14 4 2+3 −14 14− 4 2 ÷ 14− 4 2 4 −14 14− 4 2 5 4 −14 ÷ 14− 4 2 5 −14 ÷ 14− 4 2 20 −14 14− 4 2 20 ÷ 14− 4 2 6 6 ÷ 14− 16 6 14− 4 2 6 ÷ −2 6 14− −3 Example B: 16 P E M A D S 6 = − 3 −2

÷ M A P E D S − − −2 2 ÷ 4−2∙5 4 −4 − ÷ 4−2∙5 4 ÷ 4−2∙5 −8 ÷ 4 −8 ÷ − 2 2 − −2 2 4−2∙5 − 2 2 − −2 2 ÷ 4−2∙5 − − −2 2 4−2∙5 4 − − −2 2 ÷ 4−2∙5 4 −4 − ÷ 4−2∙5 4 −4− 4−2∙5 4 ÷ 4−2∙5 −8 −8 ÷ 4 −10 −8 4−2∙5 −8 ÷ −6 −8 4 8 6 Example C*: −10 + P E M A D S −8 8 6 4 3 = + −6