Quark’s angular momentum densities in position space

Slides:



Advertisements
Similar presentations
Cédric Lorcé IPN Orsay - LPT Orsay Observability of the different proton spin decompositions June , University of Glasgow, UK CLAS12 3rd European.
Advertisements

Cédric Lorcé IFPA Liège ECT* Colloquium: Introduction to quark and gluon angular momentum August 25, 2014, ECT*, Trento, Italy Spin and Orbital Angular.
Remarks on angular momentum Piet Mulders Trieste, November 2006
Cédric Lorcé SLAC & IFPA Liège How to define and access quark and gluon contributions to the proton spin December 2, 2014, IIT Bombay, Bombay, India INTERNATIONAL.
Lattice Spinor Gravity Lattice Spinor Gravity. Quantum gravity Quantum field theory Quantum field theory Functional integral formulation Functional integral.
Fermions and the Dirac Equation In 1928 Dirac proposed the following form for the electron wave equation: The four  µ matrices form a Lorentz 4-vector,
Unharmony within the Thematic Melodies of Twentieth Century Physics X.S.Chen, X.F.Lu Dept. of Phys., Sichuan Univ. W.M.Sun, Fan Wang NJU and PMO Joint.
Symmetries By Dong Xue Physics & Astronomy University of South Carolina.
Chiral freedom and the scale of weak interactions.
Chiral freedom and the scale of weak interactions.
Nucleon Spin Structure and Gauge Invariance X.S.Chen, X.F.Lu Dept. of Phys., Sichuan Univ. W.M.Sun, Fan Wang Dept. of Phys. Nanjing Univ.
Cédric Lorcé SLAC & IFPA Liège Transversity and orbital angular momentum January 23, 2015, JLab, Newport News, USA.
Light-front densities for transversely polarized hadrons Lorcé Cédric Mainz University Germany *4th Workshop on ERHMT, JLAb, Newport News, Virginia USA.
Xiangdong Ji University of Maryland/SJTU Physics of gluon polarization Jlab, May 9, 2013.
Xiangdong Ji University of Maryland/SJTU
Cédric Lorcé IPN Orsay - LPT Orsay Orbital Angular Momentum in QCD June , Dipartimento di Fisica, Universita’ di Pavia, Italy.
Problems in nucleon structure study Fan Wang CPNPC (Joint Center for Particle Nuclear Physics and Cosmology, Nanjing Univ. and Purple mountain observatory.
Generalized Transverse- Momentum Distributions Cédric Lorcé Mainz University Germany Barbara Pasquini Pavia University Italy In collaboration with:
Problems in nucleon structure study Fan Wang CPNPC (Joint Center for Particle Nuclear Physics and Cosmology, Nanjing Univ. and Purple mountain observatory.
FermiGasy. W. Udo Schröder, 2005 Angular Momentum Coupling 2 Addition of Angular Momenta    
Chiral-even and odd faces of transverse Sum Rule Trieste(+Dubna), November Oleg Teryaev JINR, Dubna.
Spin, orbital angular momentum and sum rules connecting them. Swadhin Taneja (Stony Brook University) 11/5/2015Berkeley workshop.
Cédric Lorcé IFPA Liège Multidimensional pictures of the nucleon (3/3) June 30-July 4, 2014, LPT, Paris-Sud University, Orsay, France Second International.
Strangeness and Spin in Fundamental Physics Mauro Anselmino: The transverse spin structure of the nucleon Delia Hasch: The transverse spin structure of.
Wigner Distributions and light-front quark models Barbara Pasquini Pavia U. & INFN, Pavia in collaboration with Cédric Lorcé Feng Yuan Xiaonu Xiong IPN.
Generalized TMDs of the Proton Barbara Pasquini Pavia U. & INFN, Pavia in collaboration with Cédric Lorcé Mainz U. & INFN, Pavia.
大西 陽一 (阪 大) QCDの有効模型に基づく光円錐波動関数を用い た 一般化パートン分布関数の研究 若松 正志 (阪大)
EIC, Nucleon Spin Structure, Lattice QCD Xiangdong Ji University of Maryland.
Baryon Resonance Analysis from MAID D. Drechsel, S. Kamalov, L. Tiator.
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
Cédric Lorcé IPN Orsay - LPT Orsay Introduction to the GTMDs and the Wigner distributions June , Palace Hotel, Como, Italy.
Wigner distributions and quark orbital angular momentum Cédric Lorcé and May , JLab, Newport News, VA, USA.
OAM in transverse densities and resonances Cédric Lorcé and 09 Feb 2012, INT, Seattle, USA INT Workshop INT-12-49W Orbital Angular Momentum in QCD February.
GPD and underlying spin structure of the Nucleon M. Wakamatsu and H. Tsujimoto (Osaka Univ.) 1. Introduction Still unsolved fundamental puzzle in hadron.
Monday, Apr. 11, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #18 Monday, Apr. 11, 2005 Dr. Jae Yu Symmetries Local gauge symmetry Gauge fields.
Nucleon spin decomposition at twist-three Yoshitaka Hatta (Yukawa inst., Kyoto U.) TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Equivalence Principle and Partition of Angular Momenta in The Nucleon SPIN-2006 Kyoto, October Oleg Teryaev JINR, Dubna.
Wednesday, Nov. 15, 2006PHYS 3446, Fall 2006 Jae Yu 1 PHYS 3446 – Lecture #19 Wednesday, Nov. 15, 2006 Dr. Jae Yu 1.Symmetries Local gauge symmetry Gauge.
Energy-momentum tensor Section 32. The principle of least action gives the field equations Parts.
Xiangdong Ji U. Maryland/ 上海交通大学 Recent progress in understanding the spin structure of the nucleon RIKEN, July 29, 2013 PHENIX Workshop on Physics Prospects.
December 7~11, 2010, BARYONS’10. Contents Motivation –Di-quark Structures in Hadrons Introduction to QCD Sum Rule(QCDSR) QCDSR with Di-quark Eff. Lagrangian.
Relativistic Quantum Mechanics Lecture 1 Books Recommended:  Lectures on Quantum Field Theory by Ashok Das  Advanced Quantum Mechanics by Schwabl  Relativistic.
Gluon orbital angular momentum in the nucleon
Nucleon spin decomposition
Canonical Quantization
Quantum imaging of the proton via Wigner distributions
PHYS 3446 – Lecture #23 Symmetries Why do we care about the symmetry?
Sep 21st 2015, INFN Frascati National Laboratories, Frascati, Italy
June 28, Temple University, Philadelphia, USA
June , Dipartimento di Fisica, Universita’ di Pavia, Italy
May , JLab, Newport News, VA, USA
Chapter V Interacting Fields Lecture 1 Books Recommended:
Theory : phenomenology support 12 GeV
Accessing the gluon Wigner distribution in ep and pA collisions
Handout 9 : The Weak Interaction and V-A
Structure and Dynamics of the Nucleon Spin on the Light-Cone
3/19/20181 Nucleon Spin: Final Solution at the EIC Feng Yuan Lawrence Berkeley National Laboratory.
August 29, Riken Tokyo Office, Tokyo, Japan
September 29th, IPNO, Orsay
Canonical Quantization
1 Thursday Week 2 Lecture Jeff Eldred Review
3D Animations for Exploring Nucleon Structure
PHYS 3446 – Lecture #19 Symmetries Wednesday, Nov. 15, 2006 Dr. Jae Yu
Heavy-to-light transitions on the light cone
前回まとめ 自由scalar場の量子化 Lagrangian 密度 運動方程式 Klein Gordon方程式 正準共役運動量 量子条件
Singluarity and Gauge Link in Light Cone Gauge
GLOBAL POLARIZATION OF QUARKS IN NON-CENTRAL A+A COLLISIONS
Single spin asymmetries in semi-inclusive DIS
Pion transition form factor in the light front quark model
Institute of Modern Physics Chinese Academy of Sciences
Presentation transcript:

Quark’s angular momentum densities in position space Based on: LM, Lorcé, Pasquini (in preparation) Luca Mantovani 1

Outline Angular Momentum definitions Densities in position space 3D space Impact-parameter space Results in the Scalar Diquark Model Summary and conclusions 2

Angular momentum definitions See talk by C. Lorcé 3

Field-theoretical definition Lagrangian invariant under Lorentz transformations 4

Field-theoretical definition Lagrangian invariant under Lorentz transformations Noether’s theorem Generalized Angular Momentum density 4

Field-theoretical definition Lagrangian invariant under Lorentz transformations Noether’s theorem Generalized Angular Momentum density Canonical Energy-Momentum Tensor In general: 4

Field-theoretical definition Lagrangian invariant under Lorentz transformations Noether’s theorem Generalized Angular Momentum density Space components Spin Total AM Orbital Angular Momentum (OAM) 4

Belinfante’s improved EMT Belinfante, Rosenfeld (1940) 5

Belinfante’s improved EMT Belinfante’s Generalized Angular Momentum density with Belinfante, Rosenfeld (1940) 5

Belinfante’s improved EMT Belinfante’s Generalized Angular Momentum density with Belinfante, Rosenfeld (1940) 5

Canonical vs Belinfante’s total AM 6

Canonical vs Belinfante’s total AM Clear distinction between OAM and spin at the density level Purely OAM density 6

Canonical vs Belinfante’s total AM Clear distinction between OAM and spin at the density level Purely OAM density In general non-symmetric Symmetric 6

Canonical vs Belinfante’s total AM Clear distinction between OAM and spin at the density level Purely OAM density In general non-symmetric Symmetric Density level: Integrating: 6

Canonical vs Belinfante’s total AM Clear distinction between OAM and spin at the density level Purely OAM density In general non-symmetric Symmetric Density level: Integrating: No reason a priori to choose the Belinfante’s version 6

Kinetic EMT in QCD Ji (1997) 7

We focus on the quark part Kinetic EMT in QCD Ji (1997) We focus on the quark part 7

Kinetic EMT in QCD We focus on the quark part Ji (1995) We focus on the quark part The quark’s spin density is 7

Kinetic vs Belinfante’s quark EMT 8

Kinetic vs Belinfante’s quark EMT Total AM 8

Kinetic vs Belinfante’s quark EMT Total AM Total AM 8

Kinetic vs Belinfante’s quark EMT Total AM Total AM Non-symmetric Symmetric 8

Form factors of the kinetic EMT Bakker, Leader, Trueman (2004) The average position is Fourier conjugate of 9

Form factors of the EMT 9

Form factors of the quark spin operator 10

Form factors of the quark spin operator Axial-vector form factor Induced-pseudoscalar form factor From QCD Equations of motion 10

Densities in position space 11

OAM density in four-dimensional space 12

OAM density in four-dimensional space From on-shell conditions: depends on !! 12

OAM density in four-dimensional space From on-shell conditions: depends on !! Explicit dependence on time 12

Breit frame densities 13

Breit frame densities True density with probabilistic interpretation 13

Breit frame densities True density with probabilistic interpretation With form factors True density with probabilistic interpretation 13

Breit frame densities OAM 14

Breit frame densities OAM Belinfante’s total AM 14

Breit frame densities OAM Belinfante’s total AM Spin

Breit frame densities OAM Belinfante’s total AM Spin 14

Breit frame densities OAM Belinfante’s total AM Spin Surface term 14

Breit frame densities OAM Belinfante’s total AM Spin Surface term 14

Breit frame densities Belinfante’s total AM 15

Breit frame densities Belinfante’s total AM Monopole contribution 15

Breit frame densities Belinfante’s total AM Monopole contribution Quadrupole contribution Often discarded in the literature! Polyakov (2003) Goeke et al. (2007) 15

Elastic frame densities 16

Elastic frame densities 2D densities in the impact-parameter space 16

Elastic frame densities 2D densities in the impact-parameter space We consider only the longitudal components No explicit dependence on 16

Light-front densities Light-cone coordinates OAM density 17

Light-front densities Light-cone coordinates OAM density 17

Light-front densities Light-cone coordinates OAM density Drell-Yan frame (also ) Burkardt (2002) 17

Light-front densities Light-cone coordinates OAM density Drell-Yan frame (also ) Burkardt (2002) 2D densities in the impact-parameter space 17

Light-front densities 18

Light-front densities Instant form in elastic frame for is equivalent to light-front 18

Densities in the impact-parameter space Fourier transform of the form factors in the space OAM density 19

Densities in the impact-parameter space OAM Belinfante’s total AM Spin Surface term 20

Densities in the impact-parameter space Belinfante’s total AM Monopole contribution Quadrupole contribution 21

Results in the scalar diquark model See Adhikari, Burkardt (2016) 22

Scalar diquark model Nucleon, mass 23

~ Scalar diquark model Spin 0 diquark, mass Nucleon, mass Spin 1/2 active quark, mass 23

~ Scalar diquark model Spin 0 diquark, mass Nucleon, mass Spin 1/2 active quark, mass Yukawa coupling No gauge field 23

Quark’s Light-Front Wave Functions 24

Quark’s Light-Front Wave Functions Adhikari, Burkardt (2016) Probabilistic interpretation 24

Quark’s Light-Front Wave Functions Adhikari, Burkardt (2016) Probabilistic interpretation Brodsky, Diehl, Hwang (2000) 24

Form factors of the EMT For both quark and gluon components GPD Bakker, Leader, Trueman (2004) GPD 25

Form factors in LFWF representation 26

Form factors in LFWF representation Form factors from GPDs in impact-parameter space Ji (1997) Diehl (2003) 26

Form factors in LFWF representation Form factors from GPDs in impact-parameter space GPDs overlap representation Ji (1997) Diehl (2003) Burkardt, Hwang (2004) 26

Kinetic OAM 27

OAM directly from LFWFs Scalar Diquark Model has no gauge field Jaffe-Manohar OAM 27

OAM directly from LFWFs Scalar Diquark Model has no gauge field Jaffe-Manohar OAM 27

OAM directly from LFWFs = Valid for all models with no gauge fields 28

Kinetic OAM 29

Kinetic spin term 29

Kinetic total AM 29

Kinetic OAM 30

Belinfante’s AM 30

Belinfante’s and kinetic total AM 30

Belinfante’s and kinetic total AM 30

Belinfante’s and kinetic total AM 30

Belinfante’s monopole contribution 31

Belinfante’s monopole contribution 31

Belinfante’s quadrupole contribution 31

Belinfante’s quadrupole contribution 31

Summary and conclusions 32

Summary while when integrating I discussed the densities of angular momentum in position space, in 3D (Breit frame) and 2D (Elastic frame and light front). Comparison between kinetic and Belinfante’s version of the quark EMT: at the density level, we have while when integrating 33

Summary Elastic frame DY frame I discussed the densities of angular momentum in position space, in 3D (Breit frame) and 2D (Elastic frame and light front in the Drell-Yan frame). Elastic frame DY frame 33

Summary Longitudinal components Breit frame Elastic frame DY frame I discussed the densities of angular momentum in position space, in 3D (Breit frame) and 2D (Elastic frame and light front in the Drell-Yan frame). Longitudinal components Breit frame Elastic frame DY frame 33

Summary Longitudinal components Breit frame Elastic frame DY frame I discussed the densities of angular momentum in position space, in 3D (Breit frame) and 2D (Elastic frame and light front in the Drell-Yan frame). Longitudinal components Breit frame Elastic frame DY frame 33

Summary Longitudinal components Breit frame Elastic frame DY frame I discussed the densities of angular momentum in position space, in 3D (Breit frame) and 2D (Elastic frame and light front in the Drell-Yan frame). Longitudinal components Breit frame Elastic frame DY frame 33

Summary Longitudinal components Breit frame Elastic frame DY frame I discussed the densities of angular momentum in position space, in 3D (Breit frame) and 2D (Elastic frame and light front in the Drell-Yan frame). Longitudinal components Breit frame Elastic frame DY frame 33

Summary Longitudinal components Breit frame Elastic frame DY frame I discussed the densities of angular momentum in position space, in 3D (Breit frame) and 2D (Elastic frame and light front in the Drell-Yan frame). Longitudinal components Breit frame Elastic frame DY frame Crucial at the density level Compare with Adhikari, Burkardt (2016), Polyakov (2003), Goeke et al. (2007) 33