How methyl tops talk with each other

Slides:



Advertisements
Similar presentations
Institut für Physikalische Chemie & Elektrochemie, Lehrgebiet A STRUCTURE OF THE BENZENE DIMER - GOVERNED BY DYNAMICS. MELANIE SCHNELL, Center for Free-Electron.
Advertisements

The Delicate Balance of Hydrogen Bond Forces in D-Threoninol 19 Di Zhang, Vanesa Vaquero Vara, Brian C. Dian and Timothy S. Zwier Zwier Research Group,
Hamiltonians for Floppy Molecules (as needed for FIR astronomy) A broad overview of state-of-the-art successes and failures for molecules with large amplitude.
SEMIEXPERIMENTAL EQUILIBRIUM STRUCTURES FOR THE EQUATORIAL CONFORMERS OF N- METHYLPIPERIDONE AND TROPINONE BY THE MIXED ESTIMATION METHOD JEAN DEMAISON,
Lecture 21: Chemical Bonding
Lecture 21: Chemical Bonding Reading: Zumdahl Outline –Types of Chemical Bonds –Electronegativity –Bond Polarity and Dipole Moments.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
The torsional spectrum of disilane N. Moazzen-Ahmadi, University of Calgary V.-M. Horneman, University of Oulu, Finland.
Aim: What are polar bonds and polar molecules?
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
An Acoustic Demonstration Model for CW and Pulsed Spectroscopy Experiments Torben Starck, Heinrich Mäder Institut für Physikalische Chemie Christian-Albrechts-Universität.
Chirality of and gear motion in isopropyl methyl sulfide: Fourier transform microwave study Yoshiyuki Kawashima, Keisuke Sakieda, and Eizi Hirota* Kanagawa.
The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
The inversion motion in the Ne – NH 3 van der Waals dimer studied via microwave spectroscopy Laura E. Downie, Julie M. Michaud and Wolfgang Jäger Department.
Zeinab. T. Dehghani, A. Mizoguchi, H. Kanamori Department of Physics, Tokyo Institute of Technology Millimeter-Wave Spectroscopy of S 2 Cl 2 : A Candidate.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
The effective Hamiltonian for the ground state of 207 Pb 19 F and the fine structure spectrum Trevor J. Sears Brookhaven National Laboratory and Stony.
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di.
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
1 The rotational spectrum of 13 CH 3 NH 2 up to 1 THz Roman A. Motiyenko, Laurent Margulès PhLAM, Université Lille 1 Vadim Ilyushin Institute of Radio.
June 18, rd International Symposium On Molecular Spectroscopy Gas-Phase Rotational Spectrum Of HZnCN (Χ 1 Σ + ) by Fourier Transform Microwave Techniques.
Vibration-rotation-tunneling states of the benzene dimer: An ab initio study. At the Fritz-Haber Institute Berlin: A. van der Avoird, P. R. Bunker, M.
Aim: What are polar bonds and polar molecules? Polar and Nonpolar Bonds There are two types of covalent bonds Nonpolar Covalent Bonds (equal share of.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
Rotational Spectroscopic Investigations Of CH 4 ---H 2 S Complex Aiswarya Lakshmi P. and E. Arunan Inorganic and Physical Chemistry Indian Institute of.
June 18, nd Symp. on Molec. Spectrosc. Activation of C-H Bonds: Pure Rotational Spectroscopy of HZnCH 3 ( 1 A 1 ) M. A. Flory A. J. Apponi and.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
MILLIMETRE-WAVE SPECTRUM OF ISOTOPOLOGUES OF ETHANOL FOR RADIO-ASTRONOMY Adam Walters, IRAP, Université de Toulouse, UPS-OMP-CNRS, France. Mirko Schäfer,
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Max Planck Institute for the Structure and Dynamics of Matter
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Alternate Gradient deceleration of large molecules
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Daniel A. Obenchain, Jens-Uwe Grabow
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
Pure rotational spectrum of the “non-polar” dimer of Formic acid
Do-Now: What type of bond do the following compound have
Characterisation and Control of Cold Chiral Compounds
Carlos Cabezas and Yasuki Endo
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
MICROWAVE SPECTROSCOPY OF 2-PENTANONE
IMPACT FT-MW Spectroscopy of Organic Rings: Investigation of the
Aimee Bell, Omar Mahassneh, James Singer,
Chirped pulse rotational spectroscopy
Valence Shell Electron Pair Repulsion Theory
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
THE MILLIMETER-WAVE SPECTRUM OF METHACROLEIN
Microwave spectra of 1- and 2-bromobutane
IAM(-LIKE) Tunneling Matrix Formalism for One- and Two-Methyl-Top Molecules Based on the Extended Permutation-Inversion Group Idea and Its Application.
Fourier transform microwave spectra of n-butanol and isobutanol
Methylindoles – Microwave Spectroscopy
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Essential Question: What are polar bonds and polar molecules?
What are polar bonds and polar molecules?
Microwave Spectroscopy Rotational Spectroscopy
University of Kentucky
The Rotational Spectrum and Conformational Structures of Methyl Valerate LAM NGUYEN Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA)
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

How methyl tops talk with each other Melanie Schnell Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, D-14195 Berlin, Germany Jens-Uwe Grabow Gottfried-Wilhelm-Leibniz-Universität Institut für Physikalische Chemie & Elektrochemie Callinstrasse 3A, D-30167 Hannover, Germany

Motivation - learn more about the internal rotation behavior in C3v-symmetric molecules with three C3v-symmetric tops - studied so far: (CH3)3SiCl, (CH3)3GeCl, (CH3)3SnCl, (CH3)3SiI, (CH3)3GeCCH … - large influence of the central atom on the chemical bond character and thus on the torsional behavior: top-top communication - enlarge the series to gain more information

(CH3)3GeBr ! … unusual K=0 quadrupole patterns - observed for (CH3)3SnCl, but not for (CH3)3SiCl and (CH3)3GeCl. - hypothesis: low torsional barrier and thus large splitting strong rotorsional interaction K=±1 mixing Idea probe this effect using another molecule with different quadrupole coupling and barrier to internal rotation: ! (CH3)3GeBr - intermediate torsional coupling - large quadrupole coupling

+ =   K=0 K=1 K=0 F+1F 7/2  5/2 9/2  7/2 11/2  9/2 13/2  11/2 9/27/2 11/2  9/2 7/2  5/2 13/2  11/2 K=1 16573.4 MHz 16574.0 MHz 7/2  5/2 9/2  7/2 11/2  9/2 13/2  11/2 F+1F K=0

Motivation decrease in steric hinderance increase in ionic contribution A recent studya of the series (CH3)3XCl, X = Si, Ge, Sn revealed the major influence of the central atom. covalent radii / Å smallest r(H---H) between 2 CH3 groups / Å torsional barrier (exp.) / kJ/mol tors. Splitting (J: 21, K=0) / MHz eQq(35Cl) /MHz X-C bond character / % (Townes-Dailey model) Quadrupole Moment / 1024 cm2 X = Si Ge Sn 1.17 1.22 1.44 3.0 3.1 3.6 6.91b 4.45a 1.77a 0.030b 1.8a 200a -34.8b -40.1a -35.8a ionic 18 19 26  82 81 74 35Cl: -0.085 79Br: 0.33 a Schnell et al., Angewandte Chemie Int. Ed. 45, 3465-3470 (2006). b Merke et al., J. Mol. Spectr. 216, 437-446 (2002).

COBRA-FT microwave spectroscopy The apparatus COBRA-FT microwave spectroscopy excitation 1μs Random rotation of the molecules before excitation: Dipole moments cancel MW pulse detection T = 100μs Coherence after excitation: Oscillating macroscopic dipole moment MW signal

The torsion-rotation spectrum of (CH3)3GeBr (J+1 J = 7 6-transition) Br-NQ-HFS torsional pattern 81Br 79Br

The torsion-rotation spectrum of (CH3)3GeBr

The torsional pattern of (CH3)3GeBr (J+1 J = 4 3-transition) 2 closely lying hyperfine components

Multidimensional high-barrier tunneling formalism (MS-group G162) 27 different possibilities of orienting the CH3-groups with respect to each other (33)  27 frameworks 5 topologically inequivalent tunneling pathways: HR: rotation of 1 single CH3-group HA: anti-geared rotation of 2 CH3-groups HG: geared rotation of 2 CH3-groups HL: rotation of 3 CH3-groups with the same sense HE: rotation of 3 CH3-groups with different sense

C3-overall molecular rotation MS-group G162  = (1, 2, 3),  = (4, 5, 6),  = (7, 8, 9); D = (a, b, c)(1, 4, 7)(2, 5, 8)(3, 6, 9); R = (b, c)(2, 3)(4, 7)(5, 9)(6, 8)* torsions C3-overall molecular rotation Permution-Inversion  reflection K. D. Möller, H. G. Andresen, J. Chem. Phys. 39, 17 (1963).

Tunneling Hamiltonian matrix for K=0

G162 Eigenvalues W1(A1) = H11 +6HR+6HE+2HL+6HA+6HG W2(E2) = H11 -3HR-3HE+2HL-3HA+6HG W3(I1) = H11 +3HE-HL-3HA W4(I2) = H11 +3HR-3HE-HL W5(I3) = H11 -3HR-HL+3HA W6(I4) = H11 +2HL-3HG rigid rotor energy level tunneling shifts lam energy levels torsional symmetry species tors

Torsional species in G162 tors K=0 K=1,2 K=3 Jeven Jodd A1 A1 A2 E1 A1+A2 I2 I2 I2 2I2 2I2 I1 I1 I1 2I1 2I1 I4 I4 I5 I4+I5 I4+I5 I3 I3 I3 2I3 2I3 E2 E2 E2 E3+E4 2E2

The predicted torsional splitting pattern 60th International Symposium on Molecular Spectroscopy, Columbus (OH) No unusual K=0 quadrupole splitting observed!

Spectroscopic results (CH3)374Ge79Bra (CH3)374Ge35Clb A / MHz 2730.92(14) 2875.1(21) B / MHz 1230.38601(47) 1989.548968(92) DJ / kHz -1.1954(48) 0.3260(14) eQq / MHz 263.368(58) -40.0703(16) V3 / cm-1 334.37(12) 372.359(47) F0 / GHz 158.0* 158.0* / ° 106.2* 106.2* N 47 168 / kHz 31.1 4.0 r(X-Cl) / Å 2.3459(21) 2.15198(97) * fixed a M. Schnell, J.-U. Grabow, Chem. Phys. (2007) accepted. b M. Schnell, J.-U. Grabow, PCCP 8, 2225-2231 (2006).

Character of the chemical bonds (CH3)374Ge79Bra (CH3)374Ge35Clb Ge-X  covalent 62.5 % 46.5 %  double 43.9 % 15.9 % ionic -6.4 % 37.6 % Ge-C  covalent 76.6 % 81 % ionic 23.4 % 19 % backbonding of the Br towards the Ge exceeds polarization of the -bond: positive charge results on the coupling halogen -backbonding is not possible a M. Schnell, J.-U. Grabow, Chem. Phys. (2007) accepted. b M. Schnell, J.-U. Grabow, PCCP 8, 2225-2231 (2006).

increased ionic character Conclusions torsion-rotation spectrum recorded from 2.4-20 GHz similar torsional splitting pattern as (CH3)3GeCl barrier heights: 334 cm-1 (Br) vs. 372 cm-1 (Cl) r(Ge-Br) = 2.3459 Å compared to r(Ge-Cl) = 2.15198 Å Br NQ-hyperfine structure dominates the spectrum eQq: 263.368 MHz(Br) vs. -40.0703 MHz(Cl) no unusual additional quadrupole splitting observed like (CH3)3GeCl but unlike (CH3)3SnCl Bromine compound: increased ionic character lower barrier

Thanks! Wolfgang Rogge, electronic shop PCI, GWLU Hannover Mechanical shop PCI, GWLU Hannover Fonds der Chemischen Industrie Deutsche Forschungsgemeinschaft Land Niedersachsen